新博士紹介

- 1. 氏名 村松康司 (NTT 境界領域研究所)
- 2. 論文提出大学 東北大学
- 3. 学位の種類 博士(理学)
- 4. 取得年月 1992年11月
- 5. 題目 アンジュレータ斜入射分光器を用いた放射光励起蛍光 X 線分光法に関する研究

6. アブストラクト

従来の電子線や X 線管球からの X 線の替わりに 放射光を蛍光 X 線の励起線として利用することに より、近年、蛍光 X 線分光研究はその基礎的な分 光研究のみならず分析研究においても著しい進歩 をとげつつある。しかし、蛍光収率が小さな極軽 元素 (B, C, N, O等) については、偏向電磁石か らの放射光を用いても高分解能測定に耐え得る蛍 光 X 線強度を得ることが事実上困難であるため、 この極軽元素の蛍光 X 線分光研究はほとんど未開 の研究領域となっている。この研究領域を開拓す るためには、従来の放射光に比べて格段に輝度が 高い光を励起線として利用することが不可欠であ る。

本研究ではこの極軽元素に関する蛍光X線分光 の研究領域を開拓することを目的として、次世代 の高輝度放射光であるアンジュレータ光を利用し たアンジュレータ光励起蛍光X線分光法を提案し た。具体的には、まず最初にアンジュレータ光の 分光技術の確立を目指し、シリンドリカルミラー とシリンドリカル回折格子を組み合わせた新しい 収差補正縮小光学系を考案した。そして高エネル ギー物理学研究所放射光実験施設 BL-16U におい て、この光学系に基づくアンジュレータ斜入射分 光器を開発し、アンジュレータ光の高効率かつ高 分解能な分光を実現した。次にこのアンジュレー タ光を用いて極軽元素の高分解能蛍光X線発光ス ペクトル測定および蛍光 XANES(X-ray Absorption Near Edge Structure) スペクトル測定を実現 するため、不等間隔刻線回折格子を分散素子とす

る新しい分光系の蛍光X線分光装置を開発した。 そして、本装置を用いてホウ素化合物のK殻吸収 端近傍における選択励起蛍光X線分光実験を行 い、今まで不明であった $BK\alpha$ 蛍光 X 線スペクト ルの高エネルギーサテライトの成因を解明すると ともに, 内殻-反結合軌道間の遷移過程である新 しい共鳴発光現象を発見した。また極軽元素状態 分析法への応用をねらいとして、高濃度のBF₂⁺で イオン注入されたシリコン中ホウ素の状態分析を 試みた。これにより、従来は推測の域を出ること ができなかったシリコン中のホウ素の化学状態に ついて明らかにした。さらに本法の炭素への応用 として、新素材として注目されている C60 に着目 し、アンジュレータ光を用いて穏やかに励起を行 うことにより、試料分解を抑えた信頼度の高い $CK\alpha$ 発光スペクトルを測定した。これにより、 C₆₀の物性研究に対する基礎物性データを提供し

1. アンジュレータ斜入射分光器の開発

アンジュレータ光は偏向電磁石から得られる通 常の放射光に比べて2~3桁輝度の強い干渉性準単 色放射光であり、0.1mrad程度の狭発散角を持つ 指向性の高い真空紫外/軟 X線領域(BL-16のア ンジュレータの場合:一次基本波のエネルギー= 28eV~420eV)の光である。このアンジュレータ 光の分光において相反する分光特性である効率と 分解能を高いレベルで両立させるためには、 入射 スリットレスの非対称光学配置において回折光を 無収差の微小スポットとして集光させることが必 要である。そこで、この非対称配置を実現するた めにシリンドリカルミラーとシリンドリカル回折 格子の組み合わせによる新しい分光方式を考案 し、この分光方式による収差補正集光条件式を導 出した。この収差補正集光条件式から最適な光学 パラメータを決定するために、アンジュレータ光 の放射挙動を考慮した汎用型光線追跡ソフトウェ アを開発した。そして、このソフトウェアを用い

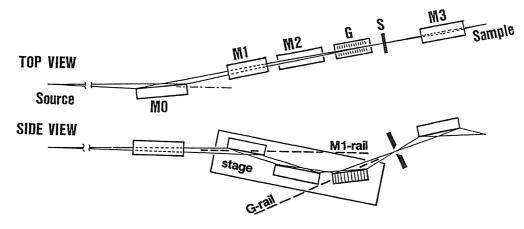


図1 アンジュレータ斜入射分光器の光学配置 M0:シリンドリカルミラー, M1:平面ミラー, M2:シリンドリカルミ ラー, G:シリンドリカル回折格子, S:出射スリット, M3:ベントシリンドリカルミラー, M1-rail:波長スキャン時にM1が描く軌跡, G-rail: Gが描く軌跡

てアンジュレータ光の集光状況をシミュレートすることにより、最適光学パラメータを決定した。

最適光学パラメータに基づいて分光器を設計・製作した(図1)。設計においては,良好な形状の集光スポットを得るために,水平方向と垂直方向の集光に関して光学素子を完全に分離する光学系を考案した。さらに波長スキャンの簡便化を図るために,平面偏向ミラーーシリンドリカル回折格子の相対位置を一定に保つ機械リンク方式を考案した。また,高指向性のアンジュレータ光に対して光軸調整操作を容易にするため,ナイフエッジと光電板を用いた光軸調整機構を考案した。さらに,非常に高い放射パワーを持つアンジュレータ光を長時間安定に分光するため,耐熱性に優れたSiCを基盤とした金マスター回折格子を分光器に搭載した。

II. SiC 基板耐熱回折格子を用いたアンジュレー 夕斜入射分光器の分光特性

アンジュレータ斜入射分光器で得られる光子数、分解能、および高次回折光の混入率を定量評価した。具体的には、溝本数 N = 1200 本/mmの回折格子を分光器に搭載し、アンジュレータ回折光の光子数を金モニターに流れる光電流から見積

もった。その結果、偏向電磁石を光源とする通常 のビームラインで得られる光子数よりも約2桁高 い 10^{12} 個/s以上の光子数が得られることを明らか にした。分解能については希ガス (Ar, Kr) の光解 離イオン収量スペクトルを測定し、その Rydberg 構造のうちで自然幅が既知なピークの半値幅を測 定することにより分解能を算出した。その結果、 E = 244eV のエネルギーにおいて理論分解能とほ ぼ一致するエネルギー分解能 $E/\Delta E = 2800$ (5 μ m スリット使用時)を得ることができた。高次光混 入率の測定に関しては、アンジュレータ光に特有 な鋸歯型のエネルギースペクトルをうまく活かす ことにより、分光スペクトルの測定のみから混入 率を推定できる簡便な測定法を考案した。本法に より得られた一次回折光に対する二次回折光の混 入率は8%以下であり、ほぼ計算通りに高次光が 効率良く抑制されていることを明らかにした。以 上からほぼ設計通りの分光特性を引き出すことに 成功した。

本分光器に搭載した回折格子の表面には 120mW/mm²以上の極めて高い放射パワーが負荷 される。この照射条件下では、数時間のアンジュレータ光照射によって通常の石英基板レプリカ回 折格子の溝面は破壊されることを明らかにした。

一方 SiC 基板金マスター回折格子を用いた場合には数百時間以上の照射によっても分光特性の劣化はほとんど観測されず,アンジュレータ光の分光に対して実用的には全く問題がないことを実証した。しかし個々の回折格子間の分光特性に若干の差がみられることから,SiC 基板金マスター回折格子のアンジュレータ光照射効果を調べるため,アンジュレータ光照射前後における溝形状変化を透過型電子顕微鏡で観察した。その結果,光照射による表面温度上昇に起因すると思われる金粒子の析出が現れることを見出した。この結果は,250℃以上に加熱すると金粒子が析出するという耐熱試験の結果と一致する。これにより,今後の耐熱回折格子の開発には表面金属層の形成が重要課題であることを示した。

Ⅲ. アンジュレータ光励起蛍光 X線分光法

エネルギー可変の準単色アンジュレータ光を蛍 光X線の励起線として利用することにより、蛍光 X線発生効率の最も良い吸収端近傍のエネルギー で励起することが可能となり、かつその準単色性 を活かすことにより XANES スペクトルも測定可 能となる。このアンジュレータ光を利用して軽元 素の蛍光 X 線分光研究を行うため、蛍光 X 線発光 スペクトルと XANES スペクトルを高効率かつ高 分解能に測定できる蛍光X線分光装置を開発し た。本装置の特徴は、蛍光 X 線の検出感度を向上 させるために入射スリットレス光学配置を採用し たことと、分散面を直線状に形成して波長スキャ ンを簡便にするために不等間隔刻線回折格子を用 いた新しい光学配置を採用した点である。本装置 の分光性能を明らかにするため、各種ホウ素化合 物と炭素化合物のKα線発光スペクトルと蛍光 XANESスペクトルを測定した。その結果、本装 置を用いて分光研究および分析研究に十分な分解 能と蛍光X線強度が得られることを明らかにし た。

IV. ホウ素化合物の K 殻吸収端近傍における選択 励起蛍光 X 線分光

ホウ素化合物の BK α 発光スペクトルは 1960年 代から今日に至るまで電子線励起法あるいはX線 管球を用いたX線励起法を用いて測定されてき た。このうち酸化ホウ素 $(B_2 O_3)$ や窒化ホウ素 (BN) の BK α 発光スペクトルには、 B(2p) \rightarrow B(1s⁻¹)遷移による主ピークに対して高エネルギー側 にサテライトピークが出現することが知られてい る。しかし、その成因については未だ解明されて いない。このサテライトの帰属を行うためには, 単色化した励起線のエネルギーを吸収端近傍まで 近づけて、発光スペクトルの励起エネルギー依存 性を調べる必要がある。しかしホウ素の吸収端エ ネルギーは約190eVであるため、従来の励起法で はこのエネルギー領域における選択励起を行うこ とが不可能であった。さらに、ホウ素の蛍光収率 は1%以下と極めて低いため、この選択励起を行 うには極めて強度の強い励起線が必要である。こ のような条件を満たす励起線としては、現時点で はアンジュレータ光が唯一のものである。そこ で、 $B_2 O_3$ とBNのBK α 発光スペクトルに現れる 高エネルギーサテライトの帰属を目的として、ア ンジュレータ光励起法による選択励起蛍光 X 線分 光実験を試みた。

その結果、 B_2 O_3 の場合には、サテライトピークのエネルギー位置は XANES スペクトルにおけるpre-edge ピークのエネルギー位置とほぼ一致し、このpre-edge ピークに等しいエネルギーの単色光(エネルギー幅= 2eV)で励起したときにのみ、サテライトピークが出現することが判った(図 2)。さらにこの場合、主ピークは低エネルギー側にシフトすることが観測された(図 3)。このことから、このサテライトピークは B(1s) 軌道から反結合性の $p\pi$ ・ 軌道へ励起された電子が再び元の $B(1s^{-1})$ 空孔へ遷移する際に放出される『共鳴発光』であることが判った。特にこの場合、サテライトピークの強度が主ピークに対して約 6 倍にも

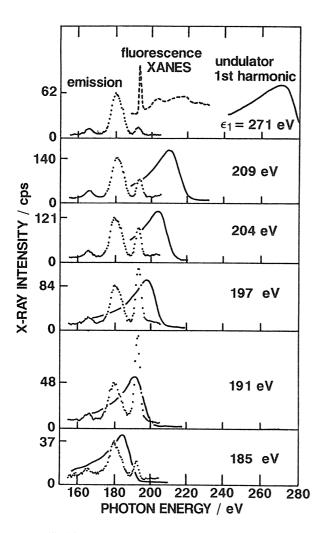


図2 準単色アンジュレータ光励起(エネルギー= 271 \sim 185eV)による B_2O_3 の $BK\alpha$ 発光スペクトル(点線) アンジュレータ光の分光スペクトル(実線)と B_2O_3 の蛍光 XANES スペクトル(破線)を併記する.

達し、従来の蛍光 X線スペクトルに比べて特異な現象であることが示された。また、このような共鳴発光現象は B_2 O_3 のみならず BN にも同様に観測された。従来、電子線励起による M線または N線の発光ピークが吸収ピークと等しいエネルギー位置に出現するという現象が若干の遷移金属化合物において観測されている。しかし、これらの遷移過程とは異なる内殻 - 反結合軌道間の遷移に基づく共鳴発光現象の観測は本研究が初めてである。

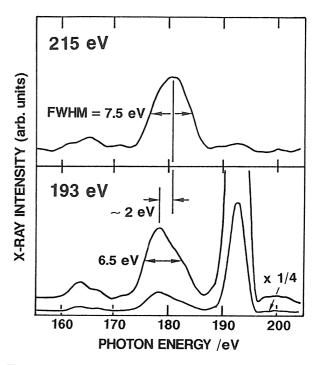


図3 215eVと 193eVの単色アンジュレータ光(エネルギー幅 = 2eV)で励起した B_2O_3 の $BK\alpha$ 発光スペクトル.

$V. \ \mathbf{BF_2}^{\scriptscriptstyle +}$ イオン注入シリコンにおけるホウ素の状態分析

半導体デバイスの微細化に伴い、p型ドーパントとして多用されるホウ素不純物のドープ層をより薄く、より高濃度に制御することが要求されている。このようなデバイスの作製プロセスにおいては、通常 BF_2 +などを用いたイオン注入法が用いられ、その分析評価には主に二次イオン質量分析法(SIMS)が利用されている。特に、デバイスの電気特性はドーパントの化学状態に強く依存するにもかかわわず今まで適切なバルク状態分析法が無かったため、SIMSによる定量分析結果から化学状態について推測しているに過ぎなかった。

そこで本研究で開発したアンジュレータ光励起 蛍光 X線分光法の状態分析への応用として、シリ コン系デバイスの電気特性に関して鍵となるシリ コン中ホウ素の状態分析を試みた。具体的には、 ドーズ量 2×10^{15} 個/ cm 2 の BF $_2$ $^+$ を 18 keV の低エ ネルギーで Si (100) にイオン注入し、このバルク 中のホウ素について BK α 発光スペクトルと蛍光 XANES スペクトルを測定した。その結果,両スペクトルは金属ホウ素のスペクトルと一致し,シリコン中ではホウ素は金属状態で存在することが判った。これから,最大 10^{21} 個/ cm^3 の高濃度でホウ素とフッ素を浅い領域に注入してもシリコン中ではそれぞれが独立に存在することを明らかにした。しかし大気中での 900° C-アニール処理を施すと, $BK\alpha$ 発光スペクトルの主ピークはケミカルシフトを生じるとともにサテライトピークが出現し, B_2 O_3 のスペクトル形状とほぼ一致することが判った。これから,アニール処理によるシリコン酸化膜の形成にともなって,ホウ素も同時に酸化されることを明らかにした。以上の結果から,アンジュレータ光励起蛍光 X 線分光法による極軽元素のバルク状態分析の有用性を示した。

VI. C₆₀の CKα 発光および蛍光 XANES 測定

 C_{60} の $CK\alpha$ 発光スペクトルは電子線励起法による測定が報告されている。しかし、 C_{60} のクラスターは電子線照射によって分解する可能性があるため、この $CK\alpha$ 発光スペクトル測定には穏やかな励起が可能な数百 eV 領域の X 線励起法が有利である。そこで、 C_{60} の信頼度の高い $CK\alpha$ 発光スペクトルを得るため、アンジュレータ光励起法によりスペクトル測定を試みた。特に本法の特徴の一つである蛍光 XANES 測定を並行して測定すること

により、蛍光 X線で観察する領域においてはクラスターの分解がほとんど無視できることを確認した。

約1.7eVの分解能で測定した結果、 C_{60} のCK α 発光スペクトルは主に σ 軌道 \rightarrow C($1s^{-1}$)遷移に起因する 274eVの主ピークと π 軌道からの遷移に起因する 278eVの小ピークから構成されることが判った。また、DV- $X\alpha$ 法から求めた計算スペクトルに 2eVのエネルギー幅をコンボリュートしたところ、この計算スペクトルの形状は測定スペクトルと完全に一致した。このことから、本研究で得られた CK α 発光スペクトルは DV- $X\alpha$ 計算を支持するとともに、励起線による分解が無視できる C_{60} クラスターの真のスペクトルであると結論した。

謝辞

本論文は、高エネルギー物理学研究所放射光実験施設における共同研究(S63~H2)および受託研究(H3~H4)の研究成果をまとめたものである。研究を行うにあたり、御指導して下さいました放射光実験施設、岩崎博施設長、松下正教授、前沢秀樹教授、および加藤博雄博士に厚く御礼申し上げます。さらに、お世話になりました放射光実験施設のスタッフの方々に、この場をお借りして感謝の意を表します。

(受付番号93011)