トピックス

新しいX線テレビによる高分子材料の 延伸と変形過程の回折実験

大石 泰生, 植村 明夫^{a)}, 雨宮 慶幸^{b)}

住友化学工業筑波研究所, *)住友化学工業石油化学品研究所, *)高エネルギー物理学研究所放射光実験施設

Structural Study of Polymers under Stretch Using a New X-ray TV Detector

Yasuo OHISHI, Akio UEMURA", and Yoshiyuki AMEMIYA^b

Tsukuba Research Lab., Sumitomo Chemical Co-Ltd., Tsukuba, Japan. a)Petrochemical Research Lab., Sumitomo Chemical Co-Ltd., Chiba, Japan. b)Photon Factory, Tsukuba, Japan.

Time-resolved synchrotron radiation small angle X-ray scattering experiment to investigate the structural change of polyethylene during stretching have been made by utilizing a new X-ray TV detector installed at the Photon Factory. This X-ray TV detector specially developed for real-time measurements of diffraction patterns employs an X-ray image intensifier with a Be-window of a 150 mm diameter. The TV detector has a sensitivity and a time resolution of 30 frames per second. This capability allows us to observe weak SAXS patterns in a time-resolved mode.

1. はじめに

高分子材料の延伸による変形や破壊において、 ボイドの発生等のサブミクロンのスケールから、 結晶やその二次的な構造の変態、フィブリルの形 成等のナノメータのスケールまで、経過と共に構 造変化がつぎつぎに起こる。このような変形過程 に関する構造解析には、時分割法によるX線小角 散乱 (SAXS)や広角回折 (WAXD)測定実験が 重要な情報を与え、かつ、異方性を持った変形で あるため、その際の二次元検出器の使用が不可欠 である。今回、ポリエチレン (PE) 試料の延伸と 変形過程に関して、我々は新しく開発されたX線 テレビ¹¹の利用を検討し、初めてのSAXSパター ンのリアルタイム観察を実現したので、その結果

を報告する。

通常の実験室系では、今回報告する延伸実験の ような数秒で完了してしまう系の時分割測定を行 った場合、特にSAXSに関しては、シグナル強度 が極端に不足するため、満足な散乱、回折パター ンの測定は困難であった。したがって、過去に行 われたPEの延伸と変形過程の報告²⁰では、その延 伸途中で一旦静止させて保持し、そのまま長時間 X線フィルムを露光する方法で行われた。しかし ながら、この方法では、当然、その露光の最中に 緩和現象に伴った構造変化が起こるので、その場 観察が行える測定技術の必要性が提唱されていた。

これまで,我々は高エネルギー物理学研究所放 射光実験施設(KEK-PF)において,高輝度光源

である放射光と、感度やダイナミックレンジ等に 優れた特長を有するイメージングプレート (IP) を 用いて、高分子材料の延伸と変形時における SAXSとWAXDの時分割測定を行ってきた³⁾。実 験には我々の開発した高速 IP 交換機⁴⁾を用い,1 秒以下の時間分解能で良好な散乱パターンを得る ことができた。その結果により,延伸変形現象に 関する動的構造解析への新しい可能性を示すこと ができた。しかしながら、実験中多数のIPを読み 取る必要がある為に多くの時間を費やす上、相変 態や破壊の時間発展のサブ秒より速い現象を観察 し記録することは技術的に困難であった。そこで 我々は、これらの欠点を補え、さらに新しい実験 領域の開拓を担う検出器として期待されているX 線テレビシステムの利用を検討し、今回これを用 いて実験を行った。

2. X線回折用 X線 TV システム

現在, KEK-PFでR&Dが行われている回折実 験用X線テレビシステムは, 1)X線イメージイン テンシファイヤー, 2)光学系(光学レンズまたは 光ファイバー), 3)撮像素子, 4)データ取り込 み部からなる4段の部位で構成されている (Fig.1)⁵⁾。我々の実験では,新たに開発された有 効径150mmを有するベリリウム窓付きX線イ メージインテンシファイアー(浜松ホトニクス)を 装備したものを使用した。これはX線回折像の撮 影を目的として開発されたものであり,通常のX 線テレビに比べて格段に広い有感面積を有するの が大きな特長である。また,このイメージインテ ンシファイヤーの導入により,イメージングプ レートと同等以上の感度が実現されている。

次に,撮像素子には,1)積分型冷却CCD,2) CCD(テレビレート),3)ビジコンタイプの撮像 管等の各種を目的毎に選択して使用できる。これ らとイメージインテンシファイヤーの組み合わせ で,他のシステムでは得られなかったS/N比の良 い画像を得ることが可能になった。今回我々は, ハイセルビコン(日立電子)を撮像素子として組 み込んだX線テレビシステムを用いた。その理由 は、シグナルの増幅機能を有するため、感度が非 常に良いこと、また、テレビレートで1秒間に30 コマの撮影が可能であるので、高い時間分解能を 実現できることである。Fig.2に今回の実験で使用 したシステムの構成図を示す。

今回の実験においては,我々は撮影したデータ をS-VHSビデオテープにアナログ式で記録してい るが,直接,高速ADCによってディジタル交換し て,それを計算機に取り込むことも可能である。 アナログ方式では,広いダイナミックレンジを確 保することが困難であったが,多数の測定や長時 間の録画等を要する実験に際しては非常に有効で あった。

3. 延伸実験とSR-SAXS

(1) BL-15AのX線小角散乱測定装置

Fig.3に現在のKEK-PF,BL15A(X線小角散乱 実験ステーション⁶)の光学系を示す。PF2.5GeV ポジトロン蓄積リングから得る入射X線は,全反 射湾曲ミラーとモノクロメータによって実験ハッ チ内のX線検出器の位置(光源より22m)で集光 するように調節されている(Fig.3(a))。全反射ミ ラーは,垂直方向の集光を行うと共に,高次波の カットが目的である。さらに,モノクロメータに は2等辺3角形の頂点を押して湾曲させた形のGe 結晶を用いており,通常0.150nmの入射X線に単 色化したうえで水平方向の集光を行っている。現 在,焦点位置では垂直0.80×水平0.74mmのビー ムサイズが実現されている。

X線検出器には、1)一次元位置敏感型検出器 (PSPC)、2) IP及びIP高速交換機、3)今回の X線テレビを選択して使用する。また、スリット 系、試料部、真空パス及びダイレクトビームスト ッパー部は、Fig.3(b)の様に光学レール上に配列 され、実験に必要な光学配置を組む自由度が確保 されている。試料部には各実験者が用意したアタ

Fig.1 Block diagram of the X-ray TV detector at Photon Factory.

Fig.2 Schematic illustration of the X-ray TV detector | which utilizes the Bewindow X-ray image intensifier together with a Hi-selvicon as an image sensor.

ッチメントを装着できるようになっており,我々 は専用に開発したガス吹付式の温度制御装置と試 料加熱延伸装置を使用している。

観測する散乱角の範囲は、光学レール上の試料 部とX線検出器間の距離を調整(50~2500mm) することによって決定する。我々が本装置を使用 して観測できる範囲は、角度 θ に関して0.03~ 20degree,波数Qにして0.05~25nm⁻¹、実空間 でのサイズに換算して0.2~125nmとなっている。 分解能に関しては、X線検出器によって異なる が、 $\delta \theta / \theta \leq 10^{-3}$ 程度となっている。

(2) 試料延伸実験装置

Fig.4に, 我々が開発した延伸装置(製作:シグマ光機)の概念図ⁿを示す。試料の延伸は, その両端をチャックで挟み両側に均等に引っ張る形で行う。この時, 両チャックが等しい距離だけ反対方向に移動するので, 試料中心部に常にX線が照射される機構になっている。延伸の速度はステッピングモータへのパルススピードで制御し, 最低1.

Fig.3 Schematic view of the aligned SAXS instruments (BL-15A at Photon Factory). (a) X-ray optics, (b) the experimental assembly are shown.

44から最大172mm/分で延伸することができる。 延伸距離はポテンショメータで,延伸時の発生張 力はロードセルによって検出され,歪(Strain, 延伸距離)と応力(Stress,張力)の相関曲線(S -S curve)を測定することができる。本装置は, 設計上の規格として最大200kg重までの負荷を加 えることが可能である。また,試料室を加熱する 機構を有し,室温付近から150℃程度までの高温 延伸実験を行うことができる。

我々は、本加熱延伸実験装置をBL-15Aの光学 系に組み込み、PE等の結晶性高分子やポリマーア ロイに関する延伸及び破壊機構についての、時分 割SAXS及びWAXDの観測と解析を行ってきてお り、現在も継続進行中である。

(3) PEの延伸変形

PE等の結晶性高分子は、溶融状態や濃厚溶液か

Fig.4 Schematic illustration of the stretching machine.

ら結晶化させた場合,スケールが大きくなるにし たがって,分子鎖の結晶化によるラメラ晶からそ の積層構造,さらに高次構造である球晶の形成へ と拡大していくことが知られている。Fig.5に示す のはその模式図である。PE結晶は,通常分子鎖を C軸方向にとる斜方晶系の結晶構造をしており, その分子鎖を折り畳みながらラメラ晶を形成する。

Fig.5 Illustrations of polyethylene crystal, lamella, and spherulitic structure models.

Fig.6 Typical stress-stain curve (S-S curve) of a polyethylene sheet during a tensile test.

ラメラ晶(高密度層)はそれらの間の非晶部(低 密度層)と共に10~30nm程度の長周期構造を構 成するので、SAXSパターンに回折リングが観測 される。このラメラ晶は結晶化が進むに連れて、 中心の結晶核から放射状に捻じれながら成長して 直径数~数10 μ m程度の球晶を形成する。

PE試料に一軸延伸を加えたときの典型的な応力 (Stress) - 歪 (Strain)の関係は, Fig.6 に示す様 な曲線 (S-S curve)を描くことが知られている。 最初,延伸量の小さい間, S-S curveは直線関係 を示し,弾性変形の領域(I)にあるが,その後, 降伏点(Yield point)が現れて塑性変形が始まる。 降伏点以降は極大値と極小値を示す領域(II)が 出現した後,右上がりのカーブを示しながら(領 域III),やがて破断に至る。我々は領域(II)の 近傍における急激な変形現象に関して興味を持 ち,動的構造解析を行ってきた。

4. 最近の実験結果と考察

(1) PE シートの延伸実験

以下に,最近我々がこの新しいX線TVシステ ムを用いて行った測定例を紹介したい。延伸実験 に用いた試料は,低密度ポリエチレン(LDPE)の 熱プレスシートである。試料の厚さは1mmで,試 料を挟むチャック間距離を35mmとし,室温下に おいて172mm/分の速度で延伸した。試料からX 線テレビ間の距離は,SAXSモードで2100mm, WAXDモードで80mmに設定して測定を行った。

Fig.7に延伸に伴うSAXS(1)及びWAXD(2) のパターン変化を示す。これは1画面を各画素 (640×480pixel)あたり8bitの階調にディジタ ル化した後,画像処理プログラム(Macintosh上 で実行)を用いて整列させ、カラーコピー機でオ ンラインにプリントアウトしたものである。降伏 点近傍での急激なパターン変化がわかりやすいよ うに、0.53秒毎に表示した。ここで、延伸方向は 紙面赤道線方向に取る。なお現在のところ、 SAXSとWAXDの測定を同時に行えていないの で、図中のSAXS、WAXD両パターンを完全に同 期して表示したものではない。延伸前には、 SAXSパターンに見られるラメラの長周期による

Fig.7 Time-resolve (1) SAXS and (2) WAXD patterns from drawn polyethylene sheet around a yield point using the X-ray TV detector system. The time-resolution of this system was 1/30 sec, but patterns shown were printed at an interval of 0.53 sec.

回折リングは波数Q = 0.60nm⁻¹ (Q = $4 \pi \sin \theta$ / λ)のところに現れている。同時にWAXDで は、斜方晶系の110 (内側の強いリング)と200 (110の外側)反射等が観察される。

Fig.6のS-S curveに即して説明すると,弾性 領域(I)の終了付近,降伏点直前では,SAXSの ラメラの長周期による回折リングが延伸方向に僅 かに楕円形に変化して行く様子が観察される (**Fig.7-1(a),(b**))。降伏点以降,リングの赤道線上 の部位が急激に低角側へと移動し(**Fig.7-1(c**)), 連続的に変化しながら8の字パターンが出現する。 そして,**Fig.7-1(d**),(e)の様に,領域Ⅱの極大値 から極小値に至る間で,8の字が子午線方向に伸 びる形で変化して行く。

一方,WAXDでは110反射の内側に,新たな別の回折リングが現れているのがわかる。この反射は応力下で出現する単斜晶の001反射であると言

われている。その後,200反射が赤道線上に連続 的にスポット化する。また,110反射と単斜晶の 反射が位置を移動しながら同様にスポット化し, 赤道線に対称なダブレットとなっていく様子が観 察される。

次に、その後丁度S-S curveの極小点を境とし て、SAXSの8の字パターンが急に消滅し、すみ やかに直線状のスポットが赤道線上に出現する領 域Ⅲのパターン(dashed pattern)に変化してい る(Fig.7-1(e)~(f))。なお、この時単斜晶の001反 射は消滅している。過去の報告では、8の字パ ターンとⅢの直線状パターンの共存が見られてい たが、今回の場合、両パターンの間に共存領域の 無いことがわかった(我々の行った遅いIPでの実 験では共存が観測されたこともある)。我々は、今 回の実験では、従来より極めて速い延伸速度で行 ったため、緩和現象を伴わない純粋な系が実現し

Fig.8 SAXS patterns from drawn polyethylene sheet at points I - III on the S-S curve (Fig.6) and structure models of the lamella deformation.

ていたと考えている。また, Fig.7-1(f),(g),(h)に 見られるように, この赤道線上の直線状スポット は発生した時点から強度を増すものの, その位置 (回折角)に変化がないことも特徴的である。

Fig.8にGerasimov¹¹らの解析をもとに描いた, 各延伸過程でのSAXSパターンと,対応する結晶 及びラメラ晶の配列の様子(回転,折れ曲がり, 消滅)の模式図を示す。延伸前の長周期による回 折リングが楕円パターンを経て8の字パターンへ と変化する挙動は,この説のようなラメラ晶の折 れ曲がりや転回で解釈できた。しかしながら,降 伏点後に現われる8の字パターンと,次の長周期 の直線状スポットの出現,およびこれらの時間的 変化に関しては,同じラメラ晶の再配列によるも のとする従来の説明は,我々の時分割測定の結果 を十分説明できないと考えられている。

このように、速い延伸過程の実時間観察はPEの 延伸と変形過程のメカニズムさらには力学物性の 発現を解明するうえで重要であり、今後、X線テ レビによる系統的実験研究が期待される。

(2) PE フィルムの延伸実験

日常使用されるようなPEフィルムは、製造時に 大きな延伸が加えられてフィルム化されており、 通常分子鎖軸が配向して結晶化した状態にある。 このような構造上の特徴は、フィルムの延伸破壊 を含む機械的特性に直接大きな影響を与えるの で、動的な構造解析から、工業的な研究に対して も直接フィードバックできる情報を得る可能性が ある。

実験に用いた試料は、厚さ30µmの、先のシー ト試料と原料を同じくするPEフィルムである。実 験ではフィルム試料の表面に対して、X線を垂直 に入射させている。延伸条件とX線光学的条件も 先のシート試料の実験と同様である。このような フィルム試料におけるSAXS及びWAXDにおける ラメラや結晶からの散乱パターンは、熱プレス シートのようなリング状ではなく、特定の方向に 長周期や回折のスポットが現れるパターンになる。

Fig.9には,延伸方向とフィルム加工時の機械的 巻き取り方向(MD)とが(1)平行及び(2)45 度,(3)90度にある時の,降伏点近傍でのSAXS パターンの変化を示している。今回も延伸方向 は,紙面の赤道線方向に取っている。各試料にお いては,長周期による回折スポットがそれぞれ特 徴的に変化する過程が観察できている。(1)の場 合では,赤道線上にあるラメラ晶による回折スポ ットが低角へシフトしてX字パターン,あるいは 8の字の上下端が消滅しているパターンに変化す る。次に(3)の場合,子午線方向の広角側にシフ トして行く。同時に赤道線方向には幅を狭めて, 子午線方向には幅広くなるので,最後に画面上で はストリーク状に変化するように見える。このと きの8の字パターンは出現しない。(2)の場合に は,(1)と(2)を混ぜ合わせたような挙動を示 すが,回折スポットが旋回しながらストリークへ と変化して行くように見えるのが興味深い。

なお、非常に微弱であるが、新しい長周期のス ポットは(1),(2),(3)の全てで観察されてい る。一方、WAXDのパターンもSAXSで見られる 配向性と一致した挙動を示すことを我々は確認し ている。

この実験では、前出のシート試料の場合よりも テレビカメラの増幅率を一桁上げて撮影した。こ れらフィルム試料のSAXSシグナルに関しては、 IPを用いた場合でも露光に1分以上を要するほど 微弱であるが、高感度なX線テレビシステムを用 いたことによって、初めて時分割測定が可能とな った。

5. まとめ

以上,新しく開発されたX線テレビによる実験 によって,我々が従来測定が困難であった降伏点 近傍のような速い現象を観測する実験,フィルム 試料からのような微弱なシグナルで時分割測定が 困難であった実験が実現可能になった。この新し いX線テレビの高感度性,高い時間分解能という 組み合せが,他の様々な系に適用でき,例えば, さらに速く進行する破断現象の観測にも応用する ことも可能である。また,X線テレビの利用によ って,時分割測定実験そのものが非常に容易にな ったことも重要で,限られたマシンタイムの中 で,実験件数が飛躍的に増加できたことも付け加 えておく。

Fig.9 Time-resolved SAXS patterns from polyethylene blown films during stretching around a yield point using the X-ray TV detector system. The tensile direction of each experiment was horizontal, and MD of each specimen was (1) parallel, (2) oblique, (3) perpendicular. The time-resolution of this system was 1/30 sec, but patterns were printed at an interval of 1.43 sec. The thickness of the films are $30 \,\mu$ m.

6. 謝辞

本研究で使用したX線テレビシステムは, PFと SPring-8(浅野芳裕, 植木龍夫), 浜松ホトニク ス, 及び八木直人(東北大)各氏による共同研究 で開発されたものである。時分割測定に関して は, 住友化学工業(㈱の児島俊郎, 後藤祐嗣, 小山 悟各氏の技術上の御援助, 御助言に感謝する。

136

文献

- 1) Y. Amemiya et al, : manuscript in preparation.
- V. I. Gerasimov et al, : J. Polym. Sci., Polym. Phys. Ed., 12, 2035 (1974).
- 3) 大石泰生:住友化学1993-Ⅱ,99(1993).
- 4) Y. Amemiya et al, : Rev. Sci. Instrum., **60**, 1552

(1989).

- 5) Y. Amemiya et al, : in Synchrotron Radiation in the Biosciences, 395 (1993).
- Y. Amemiya et al, : Nucl. Instrum. Methods, 208, 471 (1983).
- 7) T. Kojima et al, : PF Activ. Rep., 5, 346 (1987).

バックナンバー紹介

講演会テキスト

放射光フォーラム'93(Ⅱ)「界面の世界に"光"をあてる!」

主 催 日本放射光学会

体裁 B5版, 98頁 定価 2,000円(送料込)

内容

1. X-Ray Analysis of Omvpe Growth: an Overview
P.H. Fuoss ^a , D.W. Kisker ^b , A.P. Payne ^a , G.B. Stephenson ^b and S. Brennan ^c
(a: AT & T Bell Laboratories, b: IBM Research Division,
c: Stanford Synchrotron Radiation Laboratory)
2. 放射光表面・界面解析概論太田 俊明(東京大学大学院理学系研究科)
3. デバイスにおける表面と界面榊 裕之(東京大学先端科学技術研究センター)
4. X線異常分散を利用した界面構造解析 – 回折から "DAFS" まで –
水木純一郎(NEC 基礎研究所)
5. 表面光励起プロセス英 貢(豊橋技科大学)
6. 半導体表面, 超格子, 混晶の微視構造 -成長機構を探る新しい表面 XAFS -
大柳宏之(電子技術総合研究所)

申込先日本放射光学会事務局〒170豊島区東池袋2-62-8ビックオフィスプラザ507(剤ワーズ内TEL 03-5950-4896FAX 03-5950-1292