トピックス

内殻励起分子の電子緩和と解離のダイナミクス —BCl₃における B 1s 励起の場合—

上田 潔,清水雄一郎,村松 陽子 _{東北大学科学計測研究所*}

Electronic Decay and Dissociation Dynamics of Core-excited Molecules —B 1s Excitaion of BCl₃—

Kiyoshi UEDA, Yuichiro SHIMIZU and Yoko MURAMATSU

Research Institute for Scientific Measurements, Tohoku University

As an example of our recent research work on electronic decay and dissociation dynamics of core-excited molecules, we have reviewed the case for B 1s excitation of BCl₃. We demonstrate how we disentangle the complex processes after core excitation of molecules using angle-resolved electron and ion spectroscopy and the electron-ion coincidence technique, together with some theoretical calculations. Emphasis is given on the nuclear motion in the core-excited states and its effect on the molecular dissociation after Auger decay, as well as its reflection in the Auger electron spectrum.

1. はじめに

近年の軟X線モノクロメーター・挿入型光源の進歩や 第3世代リングの登場等で,軟X線領域の様々な分光研 究の発展が著しい。特に気相分子の内殻励起関連の研究は 励起光の分解能向上の恩恵を直接受けて目覚しいものがあ る。

分子の内殻電子を特定の非占有軌道に励起すると,共鳴 オージェ過程と呼ばれる内殻正孔の電子緩和が起こる。内 殻正孔状態の寿命は高々10 fs 程度の時間スケールである が,その間に,内殻励起状態では振動や解離といった核の 運動が進行する。実際,軟X線モノクロメーターの高分 解能化とともに内殻励起スペクトルに分子振動の構造が観 測されるようになり,内殻励起状態の振動分光が著しく進 歩した。気相分子内殻励起状態の高分解能振動分光につい ては足立・小杉による優れた解説があるので参照された い¹⁾。近年は,励起スペクトルばかりでなく,内殻光電子 スペクトルや共鳴オージェスペクトルにも分子振動の構造 が観測されたり,内殻励起状態における核の運動を直接反 映したスペクトル形状が観測されるようになって来た²⁻⁹⁾。 内殻励起状態で誘起された核の運動が電子緩和の後の分子 の解離に及ぼす影響も少しずつ明らかになってきてい る^{6,9,10-13)}。

本稿では、このような研究の流れの一例として、BCl₃ 分子のB1s励起に関するわれわれの最近の研究¹⁴⁻¹⁶⁾を紹 介する。われわれの研究手法は、内殻励起スペクトルの観 測、共鳴オージェスペクトルの観測、共鳴オージェ電子・ イオン同時計測、解離イオンの角分布測定といった様々な 実験手法と、実験屋にも使える比較的簡単な理論的手法と の組み合わせである。このような複合的手法を用いて、分 子の内殻励起からイオン性解離に至る道筋とその背後にあ る核の運動のダイナミクスをどのようにして明らかにして いくかをお見せしたい。

本稿の構成は次のようになっている。第2章では、本 論に入る前の準備運動として、BCl₃分子の基底状態電子 配置¹⁷⁾および B 1s 内殻励起スペクトルと電子緩和スペク トルの概要を紹介する。最近の実験で得たスペクトルを用 いながら、よく知られていること^{18,19)}を復習するのがねら いである。第3章と第4章では、最近の我々の研究から わかった最新のトピックスとして、B 1s 電子を 2a^o₂ また は 4e^o に励起した場合について、電子緩和と解離のダイナ

* 東北大学科学計測研究所 〒980-8577 仙台市青葉区片平 2-1-1

TEL: 022-217-5381 FAX: 022-217-5405 E-mail: uedak@rism.tohoku.ac.jp

ミクスを詳細に論じる。第5章はまとめである。

概論: BCl₃ 分子の電子配置と内殻励起, 電子緩和

2.1 電子配置

ここで取り上げる BCl₃ 分子の電子配置を見てみよう。 BCl₃ 分子は基底状態で D_{3h} 対称性を持つ平面正三角形分 子で、電子配置は

である。外側の6つの軌道(2a'1, 2e', 1a'2, 3e', 1e", 1a'2)は 11-18 eV の束縛エネルギーを持ち,アウターバレンス軌 道と呼ばれている。これらの軌道は Fig. 1 に示すように, B原子とCl原子との結合を担うものとCl3pローンペア 的な軌道とに分けられる。3本の等価な B-Cl 結合は D_{3h} 点群に含まれる表現では 2aí, 2e' に対応する。他の軌道の うち完全な Cl 3p 非結合性を示すのは最も外側の2つの軌 道 1e", 1a[']2 である。3e' はほとんど Cl 3p であるが, 2e' と 混じるために少し結合的となる。1α2 はπ的な結合性を示 す。この6つの軌道の内側にある1aíと1e'は約30 eVの 結合エネルギーを持ち、イナーバレンス軌道と呼ばれる Cl 3s 的な軌道である。この2つの軌道も少し結合的とな っている。また, 2a["]₂, 3a[']₁, 4e[']は空軌道であり, 2a["]₂はB の 2pπ 的な性質の非結合性軌道, 3a'ı, 4e' は B-Cl 反結合 性軌道である。このような価電子軌道の性質は, この先, 内殻励起状態の電子緩和を議論する上で1つの指針とな るので心に留めておいて欲しい。

2.2 B 1s 励起スペクトル

BCl₃ 分子の B 1s 電子の光励起について考えよう。B 1s 内殻は分子軌道としては aí 対称性を持つ。aí 軌道からの

Figure 1. Schematic energy diagram of the valence and some core orbitals of BCl_3 .

双極子遷移が可能な軌道は a² と e² である。a⁴ から e² への 遷移は遷移双極子モーメントが分子平面に対して平行にな り, a⁴ から a² への遷移は遷移双極子モーメントが分子平 面に対して垂直になる。a⁴ から a⁴ への遷移は双極子禁制 である。Figure 2 は BCl₃ 分子の B 1s 電子励起領域にお けるイオン収量スペクトルである。B 1s 電子イオン化し きい値は199.8 eV であり, このしきい値よりも下に 2つ の大きなピークがみられる。これら 2 つのピークが B 1s から 2a² への遷移と 4e² への遷移に相当する。4e² への遷 移の低エネルギー側に本来双極子禁制である 3a⁴ への遷移 が観測されるが, この禁制遷移は振動一電子相互作用(以 下振電相互作用と略す)の結果起こったものである。4e² への遷移の高エネルギー側に観測される遷移はリュードベ リ軌道への遷移である。

2.3 電子緩和スペクトル

B 1s 電子を空軌道に励起した後に起こる電子緩和につ いて考えよう。内殻電子を空軌道に励起すると,一般に, 共鳴オージェ過程と呼ばれる電子緩和が起こる。共鳴オー ジェ過程は2つに分類される。励起された電子が緩和過 程に参与する場合、参与型オージェ過程と呼ばれ、励起さ れた電子が緩和過程に参与せず傍観者のように振舞う場 合, 傍観型オージェ過程と呼ばれる。参与型オージェ過程 の終状態は価電子が直接光イオン化して1つ空孔ができ た場合と同じ状態であるため、参与型オージェ電子放出は 光電子バンドの共鳴増幅として観測される。一方、傍観型 オージェ過程の終状態は価電子軌道から電子が1つ抜け, もう1つの電子が非占有軌道に励起された状態であるた め, 傍観型オージェ電子放出はいわゆる光電子サテライト の共鳴増幅として観測される。Figure 3 に励起光のエネ ルギーを196.5-197.5 eV の間0.2 eV きざみで変化させて 観測した BCl₃ 分子の電子放出のスペクトルを示す。横軸 は電子の運動エネルギーである。励起光のエネルギーが 196.5 eV の電子スペクトルには178 eV よりも高エネルギ ー側に2.1節で調べた価電子軌道からの光電子放出のピー クが観測されている。励起エネルギーが197 eV 付近の B 1s→4e′共鳴励起により光電子放出が共鳴増幅しており, 参与型オージェ過程が起こっているのがわかる。また,

Figure 2. The ion yield spectrum of BCl_3 in the vicinity of the B 1s threshold.

Figure 3. The electron emission spectra of BCl₃ recorded at several photon energies which cross the B $1s \rightarrow 4e'$ excitation.

B $1s \rightarrow 4e'$ 共鳴励起により出現する運動エネルギーが178 eV 以下の幅広な構造が傍観型オージェ電子放出に対応する。

3. 詳論その 1: B 1s→2aⁿ2 励起の場合

3.1 B 1s→2a² 励起スペクトルと電子緩和スペクトル

Figure 4 に B 1s 軌道から 2a² への遷移に相当するピー クを拡大して示す。励起光エネルギーの幅は約100 meV 程度である。内殻正孔寿命幅は約60 meV 程度と考えられ る。一方, Fig. 4 に観測されている 2a² への遷移は線幅 が約210 meV である。従って,この見かけの幅は分解で きない複数の振電状態の重ね合わせによると考えられる。

Figure 5(a) に192.5 eV の単色化した軟 X 線を用いて B1s電子を2a2″軌道に共鳴励起した際に観測される価電 子軌道からの共鳴光電子放出を,194 eVの単色化した軟 X線による価電子軌道からの非共鳴光電子放出と比較し て示す。細い実線が非共鳴光電子スペクトル、太い実線が 共鳴光電子スペクトルである。Figure 5 のグラフの横軸 は入射光エネルギーから電子の運動エネルギーを引いて得 られる束縛エネルギーと呼ばれる量で、中性分子基底状態 を基準にしたイオンの状態エネルギーに対応する。電子の エネルギー分析は半径80 mm の150°球面セクター型静電 エネルギー分析器を用い、分析器のバンドパスを約0.4 eV 程度に設定して行っている。Figure 5(a)を見ると, 1a2 を除くほとんどすべての軌道からの光電子放出が共鳴 増幅することがわかる。つまり,参与型オージェ過程が起 こっているのである。特に 2e' と 1a² からの光電子放出の 増幅が著しい。これらの軌道は他の軌道に比べて B 2p 成 分を多く持つ。このことからB1s電子を2a2軌道に励起

Figure 4. The ion yield spectrum of BCl₃ in the vicinity of the B $1s \rightarrow 2a_2^{"}$ excitation.

Figure 5. (a) The electron spectra of BCl₃ in the binding energy range between 11 eV and 19 eV, recorded at two photon energies; at 194 eV (thin line) which is far from any resonances and at 192.5 eV (thick line) which corresponds to the B $1s \rightarrow 2a''_2$ excitation energy. (b) Angular anisotropy parameters β for valence photoelectrons of BCl₃, recorded at photon energy 194 eV, i.e., off-resonance. (c) Angular anisotropy parameters β for resonance-enhanced valence photoelectrons of BCl₃, recorded at photon energy 192.5 eV, i.e., B $1s \rightarrow 2a''_2$ excitation.

した際に起こる参与型オージェ過程には緩和に参与する価 電子軌道の B 2p 成分が主な役割を担っていることがわか る。

一般に光電子放出には各々の軌道からの光イオン化のダ イナミクスを反映した異方性が現れる。励起光が完全直線 偏光の場合,放出される光電子分布は励起光偏光軸(E ベクトル)の周りに円筒対称な分布となり, E ベクトルか ら θ の角度方向の光電子放出確率は

$$I(\theta) = \frac{\sigma}{4\pi} \left[1 + \beta P_2(\theta) \right] \tag{2}$$

で表わされる。ここで β は異方性パラメーターと呼ばれ, 光電子放出の異方性の度合いを表わす。 P_2 は2次のルジ ャンドル多項式である。**Figure 5**(b)と(c)に非共鳴励起 (194 eV),共鳴励起(192.5 eV)の場合の光電子放出の 異方性パラメーター β の測定結果を示す。非共鳴励起の 場合, β の値が軌道に依らずほとんど1近傍である。共鳴 励起の場合,共鳴増幅が大きくなるほど異方性が少なくな り、 β が減少する。特に,共鳴増幅の著しい2e'と1a^o₂で は β 値の減少が著しく,0.3-0.5まで減少する。

B 1s 電子を 2a⁷ 軌道に励起したときに観測される傍観 型オージェ電子スペクトルの一部を Fig. 6(a)に示す。こ のスペクトルはアウターバレンス軌道に 2 つの正孔と 2a⁷ 軌道に 1 つの電子を持つ状態に対応する。傍観型オージ ェ電子放出は Fig. 6(a)に示した領域でもさらに高い束縛 エネルギーの領域でも概して等方的である。しかし,

Fig. 6(b)に見るようにいくつかのエネルギー領域に分け てその領域の積分値について β 値を求めると,束縛エネ ルギーが21 eV 近傍ではわずかに正の,24 eV 近傍ではわ ずかに負の β 値を示すことがわかる。21 eV 近傍,24 eV 近傍の状態の電子配置はそれぞれ 2 $e'^{-1}3e'^{-1}2a''_2, 2e'^{-2}2a''_2$ に対応すると思われる¹⁹。

このようなオージェ電子の角分布にはどのような意味が あるのだろうか?

初めに傍観型オージェ過程について考えてみよう。閉殻 原子の1s電子をp軌道に励起した場合に起こる傍観型オ ージェ過程では、光励起によって原子に持ち込まれた偏向 は、オージェ過程の間、傍観者のように振舞うp電子に 保存される。従って、偏向していない1s空孔の緩和の際 の傍観型オージェ電子放出は等方的となる。BCl₃分子の B1s→2 a_2° 励起では、原子の場合と同様に2 a_2° (B2 p_z)電子 が偏向するだけでなく、分子自身も空間的に配向する。ま た、原子では縮退していた軌道が、分子では分子場の影響

Figure 6. (a) The spectator Auger electron spectrum of BCl₃ in the binding energy range between 20 eV and 30 eV, recorded at photon energy 192.5 eV, i.e., the B $1s \rightarrow 2a_2^{"}$ excitation. (b) The angular anisotropy parameters β for spectator Auger electrons of BCl₃, recorded at photon energy 192.5 eV, i.e., the B $1s \rightarrow 2a_2^{"}$ excitation.

で対称性毎にエネルギー的に分裂する。例えば、2pxと $2p_{y}$ からなる e'は $2p_{z}$ からなる a' と異なるエネルギーを持 つ。そのため、励起光によって配向した分子からの傍観型 オージェ電子放出を終状態の対称性をエネルギー的に分離 して観測すると、オージェ過程に関与する電子の軌道の偏 向を指定することになり、異方性が現れる可能性がある。 つまり、オージェ電子放出の角分布は、分子の空間的な配 向度と励起には拠らないオージェ過程に固有な動的因子 (オージェ電子放出に寄与する部分波毎の振幅と位相差) によって決定されることになる²⁰⁾。しかし,多原子分子 のオージェ遷移では多数のオージェ終状態が密に存在し, 必ずしも終状態をよく分離して観測することができない。 その結果、傍観型オージェ電子の角分布はほとんど等方的 となることが多い。実際, Fig. 6(b)を見ると, 確かに傍 観型オージェ電子放出は平均するとほぼ等方的であり、終 状態が比較的分離されている部分ではわずかに異方性が現 れていることがわかる。

参与型オージェ電子放出の角分布について考えよう。閉 殻原子の1s電子をp軌道に励起した場合に起こる参与型 オージェ過程では,偏向したp電子自体がオージェ電子 放出に参与する。このような場合,オージェ電子放出の角 分布は励起状態の偏向度(アラインメント)とオージェ過 程に固有な動的因子によって決定される。分子の参与型オ ージェ電子放出も同様である。基本的には,光励起によっ て配向した分子の傍観型オージェ電子放出の終状態の対称 性をエネルギー的に分離して観測する場合とも同様である 点に注意して欲しい。また,参与型オージェ過程の終状態 は価電子軌道からの直接イオン化過程の終状態と同じなの で,この2つの過程が干渉して角分布にもその影響が現 れることがあることを記憶しておいて欲しい。

Figure 5(b)と(c)とを比べてみると、価電子軌道から の光電子放出共鳴増幅が著しいほど β 値の減少も著しい。 このような β 値の振舞いはオージェ過程に固有な動的因 子に拠るものであり、一般化して話すことは正しくない。 例えば共鳴増幅が最も著しい $2e^{-1}$ 光電子の β 値が減少す るのは参与型オージェ電子放出がe''対称性を持つことか ら来るのである。

3.2 B 1s→2a² 共鳴オージェ終状態からのイオン性解離

内殻励起分子のイオン性解離は先の章で見たような共鳴 オージェ電子緩和を経て起こる。共鳴オージェ終状態から どのような解離イオンがどのようなエネルギーを持って生 成されるかを調べるにはエネルギー分析した共鳴オージェ 電子とエネルギー分析した解離イオンとの同時計測を行う ことが必要である。Figure 7 はそのような同時計測の結 果をまとめたものである。電子とイオンのエネルギー選別 には半径80 mm の150°球面セクター型静電エネルギー分 析器を用い,分析器のバンドパスは電子について約5 eV 幅,イオンについて約2.5 eV 幅に設定している。Figure

7の横軸はイオンがエネルギー分析器を通過するのに要す る飛行時間である。飛行時間の原点は電子の検出時刻で、 飛行時間からイオンの質量を知ることができる。Figure 7(a)はB1s電子を2a²に励起した際に共鳴増幅される束 縛エネルギーが16 eV 近傍の光電子(主に 2e') と運動エ ネルギーが0eV 近傍の解離イオンとの同時計測スペクト ルである。BCl⁺ イオンのみが観測される。共鳴増幅した 光電子と運動エネルギーが3eV 近傍の解離イオンとの同 時計測信号は検出されなかった。Figure 7(b)は 2a² 励起 により放出される束縛エネルギーが25 eV 近傍の傍観型共 鳴オージェ電子と運動エネルギーが0eV近傍の解離イオ ンとの同時計測である。B+イオン, Cl+イオン, BCl+ イオンが観測される。Figure 7(c)は束縛エネルギーが25 eV 近傍の傍観型共鳴オージェ電子と運動エネルギーが3 eV 近傍の解離イオンとの同時計測である。B+ イオンだ けが選択的に観測される。これらの観測から、高い運動エ ネルギーをもって放出される解離イオンはB+イオンであ り, エネルギーをもった B+ イオンは傍観型共鳴オージェ 終状態を経て生成することがわかる。

BCl₃ 分子は先に述べたように B 原子が中心にある D₃h 対称性を持った平面分子である。分子解離が分子平面内で

Figure 7. The energy-selected ion time-of-flight spectra of BCl₃, recorded in coincidence with energy-selected electrons, at photon energy 192.5 eV, i.e., the B $1s \rightarrow 2a_2''$ excitation of BCl₃. (a) Ions at kinetic energy ~ 0 eV, with resonant enhanced valence photoelectrons at binding energy ~ 16 eV in Fig. 5. (b) Ions at kinetic energy ~ 0 eV, with spectator Auger electrons at binding energy ~ 25 eV in Fig. 6. (c) Ions at kinetic energy ~ 25 eV in Fig. 6.

起こる場合は中心にある B 原子はほとんどエネルギーを 受け取ることができないはずである。エネルギーを持った B+ イオンは分子平面外に飛び出ているのだろうか? イ オンの放出方向を見てこのような問いに答えるのが,次に 示す角度分解イオン分光である。

Figure 8(a)にB1s→2aⁿ2 励起領域における解離イオン の収量スペクトルを示す。このスペクトルはイオン性解離 により生成したイオンのうち運動エネルギーが5eV以上 の解離イオンのみを励起光直線偏光軸(Eベクトル)に 対し0°方向および90°方向で検出したものである。したが って検出したイオンは主に B+ と考えられる。0°方向で検 出したイオンの収量スペクトルが実線で、90°方向で検出 したイオンのスペクトルが点線で示されている。B1s→ 2a² 励起では遷移双極子モーメントが分子平面に対して垂 直になる。D_{3h}平面構造をもつ BCl₃ 分子がイオン性解離 する際に, 分子平面内に解離イオンが放出されるとする と、Eベクトルに対し0°方向には解離イオンは観測され ないはずである。しかし, Fig. 8(a) で示すように 0° 方向 で検出したイオン収量スペクトルにもB1s→2a2 励起に対 応するピークが観測されている。このことから B+ イオン は確かに分子平面垂直方向速度成分をいくらか持って飛び 出していることがわかる。

電子放出の異方性を議論する際に異方性の度合いを表わ すパラメーター β を導入した。解離イオンの放出の異方 性も(2)式で記述される。励起光が完全直線偏光の場合, 解離イオンの異方性パラメーター β はEベクトルに対し て 0° 方向および90°方向で検出したイオン収量スペクトル から

Figure 8. (a) The energetic (≥ 5) ion yield spectra of BCl₃ recorded in the direction of 0° (solid line) and 90° (dotted line) in the vicinity of the B $1s \rightarrow 2a_2^{"}$ excitation. (b) The angular anisotropy parameters β for energetic (≥ 5) ions.

で与えられる。この式を用いて求めた β を**Fig.**8(b)に示 す。2a⁷2 励起では β の値が-0.4まで減少している。一方, ゆっくりとした段階的な多体解離は起きていないと仮定す ると解離イオンの異方性パラメーター β は双極子モーメ ントと解離イオンの放出方向とのなす角 χ と次式のよう な関係にある。

$$\beta = 2P_2(\cos\chi) \tag{4}$$

この式を用いて β ~-0.4に対応する χ の値を見積もって みると63°となる。つまり、B⁺ イオンは、平均すると、 分子平面に垂直な C_3 対称軸から63°傾いた方向、あるい は分子平面から27°度傾いた方向に飛び出していることが わかったのである。

3.3 B 1s⁻¹2a² 内殻励起状態の核の運動

どのようにして B⁺ は分子平面に垂直な速度成分を持っ て面外に飛び出ることができるのだろう? このメカニズ ムを理解するために分子の核の運動について考察しよう。 ここで分子回転は時間スケールが ps のオーダーで内殻励 起状態の寿命 (10 fs のオーダー) に比し十分に長いので 無視できる。従って考慮すべき核の運動は振動あるいは解 離である。基底状態で D_{3h} 対称性を持つ平面分子 BCl₃ の 振動には全対称伸縮振動 ($A'_1: \nu_1 = 59 \text{ meV}$), 面外垂直振 動 ($A''_2: \nu_2 = 56 \text{ meV}$), 二重縮重伸縮振動 ($E': \nu_3 = 118$ meV), 二重縮重偏角振動 ($E': \nu_4 = 30 \text{ meV}$) の4つの モードがある。B 1s→2a'' 励起後の BCl₃ 分子のイオン性 解離において B⁺ が分子平面に垂直な速度成分を持つ原因 として,内殻励起状態で面外垂直振動が励起される可能性 が考えられる。

内殻励起の際に励起される振動について考察するため に、ab initio 計算で内殻励起状態の安定構造を求めてみよ う。計算の際には内殻励起状態の記述によく用いられる等 核近似を用いる。等核近似とは、BCl₃分子のB1s電子を 2a%に励起した状態を CCl3 分子の基底状態で近似する方 法である。この等核近似を用いた第一原理計算から, Fig.9に示すように、CCl₃分子は平面構造からわずかば かりC原子が面外に押し出されたピラミッド立体構造で あることがわかる。この立体構造の CCl₃ 分子(C_{3n}) は平 面構造の CCl₃ 分子(D_{3h})と比べて約0.16 eV ほどエネル ギーが低くなっている。C3v 安定構造にある¹⁰⁾ CCl₃の振 動モードを調べると、*D*_{3h}平面分子の面外垂直振動に対応 する対称変角振動が v2~50 meV であり、~0.16 eV のポ テンシャルのくぼみに数個の変角振動準位が存在し得るこ とがわかる。平面構造をとる BCl₃ 分子が,このようにわ ずかに歪んだ立体的な安定構造をとる内殻励起状態に遷移 する場合、面外垂直振動の振動量子数が数個(偶数個)励 起された状態への遷移が有利となる。Figure 4のイオン 収量スペクトルに見られる B 1s→2a^r 遷移のピークの半値

Figure 9. Stable geometry of the ground state (D_{3h}) and the coreexcited state $(C_{3\nu})$ of BCl₃.

全幅約0.2 eV の中にはいくつかの振電状態が含まれると 考えられたことを思い出して欲しい。等核近似モデルに基 づく振動の考察から,いくつかの分離できない振電状態は 面外垂直振動が励起された状態であることが結論される。

内殻励起状態で高々数個面外垂直振動量子数が励起され ることが共鳴オージェ過程を経て解離する過程にどのよう な影響を及ぼすのだろうか? 内殻励起状態で面外垂直振 動に蓄えられたエネルギーは高々0.2 eVで,解離イオン B⁺の持つ分子平面垂直方向速度成分を説明するには小さ すぎる値である。重要なのは,内殻励起状態において面外 垂直振動が励起されるために,共鳴オージェ過程が起こる 時点で,平均すると中央のB原子が分子平面からかなり 押し出されている点である。その結果として,共鳴オージ ェ終状態においてB原子が分子平面から押し出されてい るために,傍観型共鳴オージェ終状態から解離する際に B⁺が十分に大きな分子平面垂直方向速度成分を受け取る ことができたのである。

ここで同じく D_{3h} 対称性をもつ BF_3 分子の同様な研究 例と比較してみよう。 $B_{1s} \rightarrow 2a_2''$ 励起の見かけの共鳴幅は BF_3 では約400 meV と 2 倍程広い⁵⁾。また, $B_{1s} \rightarrow 2a_2''$ 励 起により解離生成した B^+ イオンの β 値も BF_3 では~ -0.2である¹⁰⁾。こういった観測事実は, BF_3 の B_{1s} ⁻¹ $2a_2''$ 内殻励起状態の方がより歪んでいることを示唆してい る。実際, BF_3 分子の B_{1s} 電子を $2a_2''$ に励起した状態を CF_3 分子の基底状態で近似して, その安定構造とエネルギ ーを求めると, F-C-Fの角度が111度の C_{3v} ビラミッド構 造となり, そのエネルギーは D_{3h} 平面構造の場合に比べ て1.4 eV 低い。つまり, BCl_3 の B_{1s} ⁻¹ $2a_2''$ 内殻励起状態 に比べて立体構造変化による緩和エネルギーが約10倍も 大きいのである。

BF₃や BCl₃の B 1s⁻¹2a² 内殻励起状態で C_{3v} 立体構造 に歪むのは、2a² 空軌道に電子を1個加えたために軌道の 混成が変わることに拠るということができる。このことを 振電相互作用に基づくモデルの視点から言い変えると、 1s⁻¹2a² 状態とその近傍にある 1s⁻¹3a¹ との擬ヤン・テラ 一混合によって 1s⁻¹2a² 状態にある分子が D_{3h} 平面構造か ら C_{3v} 立体構造に歪むということになる²¹)。BCl₃の緩和 エネルギーが BF₃ の場合より一桁小さいということは BCl₃ の内殻励起状態間の擬ヤン・テラー効果が BF₃ に比 べて弱いということを示唆している。足立らは直線分子 CO₂, OCS の C 1s 電子を π 軌道に励起した際に屈曲振動 が励起されるのはレナー・テラー効果によることを見いだ した²²⁾。彼らはまたレナー・テラー効果は CO₂ が OCS よ りも強く, CS₂ ではほとんど働かないことを明らかにした が, この傾向は BCl₃ では BF₃ よりも擬ヤン・テラー効果 がはるかに小さいこととよく呼応している。

4. 詳論その2:B 1s→4e' 励起の場合

4.1 B 1s→4e' 励起スペクトルと電子緩和スペクトル

Figure 10に B 1s 軌道から 4e' への遷移に相当するピー クを拡大して示す。励起光エネルギーの幅は約100 meV 程度である。観測された共鳴構造全体は 1 eV 近くに広が っている。明らかに多数の振電状態への遷移が重なり合っ たものであるが、スペクトル形状から振電状態が 2 つの グループに分かれているのがわかる。この 2 つのグルー プはもともと二重縮退していた B 1s⁻¹4e' 状態がヤン・テ ラー相互作用のために縮退がとけて 2 つの状態に分裂し たものと考えられる。

B 1s→4e' 遷移に相当するピークの低エネルギー側に現 れる小さなピークは振電相互作用によって誘起された B 1s→3a'₁ 遷移である。B 1s⁻¹3a'₁ 内殻励起状態は面外垂直 振動 (A''_2) を介して B 1s⁻¹2a''₂ と結合するが、3.3章で見 たように、この結合は BF₃ と比して非常に弱い。一方、 誘起された B 1s→3a'₁ 遷移の強度は BF₃ と比して決して 弱くはない。従って、この禁制遷移は B 1s⁻¹3a'₁ が主に非 対称伸縮振動 (E') を介して B 1s⁻¹4e' と結合するために 誘起されたと考えられる。

Figure 11に196.9 eV の単色化した軟 X 線を用いて B 1s 電子を 4e' 軌道に共鳴励起した際に観測される価電子軌 道からの共鳴光電子放出を, 196.5 eVの単色化した軟 X 線による価電子軌道からの非共鳴光電子放出と比較して示 す。細い実線が非共鳴の場合の光電子スペクトル、太い実 線が共鳴光電子スペクトルである。2e'光電子ピークの共 鳴増幅が顕著であるが、増幅の度合いは B 1s→2a² 励起の 場合ほど著しくはない。特に興味深いのは 2e' 光電子ピー クの高エネルギー側に肩構造が現れている点である。この 肩構造は、後で詳しく議論するように、内殻励起状態にお ける核の運動を反映したものと考えられる。また、一見、 スペクトル全域のバックグラウンドが高くなったように見 えるが、これはほとんど連続的なエネルギーを持った電子 の放出があることによる。このような連続的なエネルギー 分布をもった電子放出は内殻励起状態のポテンシャルが解 離的な場合によく観察される4,23)。

2 つの分離されない光電子ピーク 3e' + 1e'' と2e' 光電子 ピークおよびその肩構造について,励起光エネルギーを B $1s \rightarrow 4e'$ 共鳴近傍で変化させたときにどのように強度と

Figure 10. The ion yield spectrum of BCl_3 in the vicinity of the B $1s \rightarrow 4e'$ excitation. The solid line corresponds to the theoretical calculation based on the vibronic model.

Figure 11. The electron emission spectra of BCl₃ in the binding energy range between 11 eV and 19 eV, recorded at two photon energies; at 196.9 eV (thick line) which corresponds to the top of the B $1s \rightarrow 4e'$ resonance and at 196.5 (thin line) which corresponds to the foot of the B $1s \rightarrow 4e'$ resonance. See Figs. 3 and 10.

異方性パラメーター β が変化するかを測定した結果を Fig. 12に示す。強度は Fig. 11に示した範囲における積 分値をとっており、バックグラウンドは差引いていない。 2e' は B 1s→4e' 励起によって強度が増して β 値が減少す る。2e' ピークの肩構造部分は基本的には共鳴増幅成分の みからなり、 β 値はほとんどゼロ、つまり、等方的な電子 放出となっている。3e'+1e" は B 1s→4e' 励起によって僅 かに強度が増すが、その強度が最大となる光子のエネルギ ーは B 1s→4e' 励起のピークから高エネルギー側にずれた 2 つ目のピーク成分の位置に対応している点に注目して欲 しい。 β 値はこの強度変化をちょうど裏返しにしたよう に、強度が増えたり減ったりすると共に減ったり増えたり する。B 1s→4e' 励起の場合も、B 1s→2a^o 励起の場合と同 様に、共鳴増幅された電子放出は異方性を失う傾向がある ことが確認されたわけである。

4.2 B 1s→4e' 共鳴オージェ終状態からのイオン性解離

Figure 13(a)は B 1s 電子を 4e' に励起した際に共鳴増 幅される束縛エネルギーが16 eV 近傍の光電子(主に 2e') と運動エネルギーが 0 eV 近傍の解離イオンとの同時計測 スペクトルである。BCl⁺ イオンのみが観測される。共鳴 増幅した光電子と運動エネルギーが約 3 eV の解離イオン との同時計測信号はほとんど検出されなかった。**Figure**

Figure 12. Evolution of the intensities and the β values for photoelectron bands, 3e' + 1e'', 2e' and its shoulder structure, indicated by horizontal bars in Fig. 11, in the photon energy region which crosses the B $1s \rightarrow 4e'$ excitation.

13(b)は B 1s→4e' 励起により放出される束縛エネルギー がと30 eV 近傍の傍観型オージェ電子と運動エネルギーが 0 eV 近傍の解離イオンとの同時計測である。B⁺ イオン, Cl⁺ イオン, BCl⁺ イオンが観測される。これらの測定結 果は Fig. 7(a), (b) に示した B 1s→2a² 励起の場合と同様 である。Figure 13(c) は傍観型オージェ電子と運動エネ ルギーが約 3 eV の解離イオンとの同時計測である。B 1s→2a² 励起の場合には B⁺ イオンだけが観測されていた が, B 1s→4e' 励起の場合には B⁺ イオン, Cl⁺ イオン, BCl⁺ イオンが観測される点が大きく異なる。

解離イオンの角度分布を見てみよう。**Figure 14**(a)に B 1s→4e' 励起領域においてEベクトルに対し0°方向と 90°方向に放出された解離イオンの収量スペクトルを示 す。実線が0°方向,点線が90°方向で測定したスペクトル である。**Figure 14**(b)に **Fig. 14**(a)のイオン収量スペク トルから求めた異方性パラメーター β を示す。 β の値は B 1s→4e' 励起領域において約0.2と正の値を示している。

B 1s→4e['] 励起では遷移モーメントが分子平面内にある ため、解離イオンは分子平面内に放出されてもE < 0ト ルに対し0°方向にも90°方向にも観測される。解離イオン が面外方向にも放出されたかどうかを確かめるために、 Fig. 14(a)の $I(0^\circ) > I(90^\circ)$ のイオン収量スペクトルか ら、双極子モーメントが分子平面に平行となる $a'_1 \rightarrow e'$ 遷移 成分と垂直となる $a'_1 \rightarrow a''_2$ 遷移成分とを形式的に求めてみ る。もし、 $a'_1 \rightarrow a''_2$ 遷移成分が現われれば、解離イオンが面 外にも放出されたことになる。

解離イオンが分子平面内に放出されると仮定すると、 a'_1 からe'への遷移では解離イオンの異方性パラメーター $\beta_{e'}$ は0.5、 a'_1 から a''_2 への遷移では $\beta_{a'_2}$ は-1となる。解離イオンの異方性パラメーター β はそれぞれのチャンネルへの部分断面積を $\sigma_{e'}, \sigma_{a'_2}$ とすると

$$\beta = \beta_{e'} \sigma_{e'} + \beta_{a_2^*} \sigma_{a_2^*} = 0.5 \sigma_{e'} - \sigma_{a_2^*} \tag{5}$$

Figure 13. The energy-selected ion time-of-flight spectra of BCl₃, recorded in coincidence with energy-selected electrons, at photon energy 196.9 eV, i.e., the B $1s \rightarrow 4e'$ excitation of BCl₃. (a) Ions at kinetic energy ~ 0 eV, with resonant enhanced valence photoelectrons at binding energy ~ 16 eV in Fig. 11. (b) Ions at kinetic energy ~ 0 eV, with spectator Auger electrons at binding energy ~ 30 eV (see Fig. 3). (c) Ions at kinetic energy ~ 30 eV (see Fig. 3).

と表わされる。一方、イオンの生成断面積 σ が

$$\sigma = \sigma_{e'} + \sigma_{a_2^{\circ}} (= I(0^{\circ}) + 2I(90^{\circ}))$$
(6)

で与えられるので、 $\sigma_{e'} \ge \sigma_{a_2}$ は測定された $I(\mathcal{O}^\circ) \ge I(\mathcal{O}^\circ)$ から求められる $\sigma \ge \beta$ を用いて

$$\sigma_{e'} = \frac{2}{3} (1+\beta)\sigma, \ \sigma_{a_2'} = \frac{1}{3} (1-2\beta)\sigma \tag{7}$$

と記述できる。**Figure 14**(c)にこのようにして求めた部 分断面積 $\sigma_{e'}$, $\sigma_{a'_2}$ を示す。 $\sigma_{e'}$ 成分が強くみられるが, $\sigma_{a'_2}$ 成 分もわずかにみられる。このことは解離イオンは主に分子 面内に主な速度成分を持つが,分子平面垂直方向速度成分 もわずかながらあることを示唆している。

B $1s \rightarrow 2a_2''$ 励起の場合には運動エネルギーを持つイオン として B⁺ イオンだけが観測されていたが, B $1s \rightarrow 4e'$ 励 起の場合には B⁺ イオンだけでなく Cl⁺ イオンや BCl⁺ イ オンも観測されていたことを思い出して欲しい。Cl⁺ イオ ンや BCl⁺ イオンがエネルギーを持っているのは分子解離

Figure 14. (a) The energetic (≥ 5) ion yield spectra of BCl₃ recorded in the direction of 0° (solid line) and 90° (dotted line) in the vicinity of the B $1s \rightarrow 4e'$ excitation. (b) The angular anisotropy parameters β for energetic (≥ 5) ions. (c) The partial cross sections $\sigma e'$ and $\sigma a_2''$ for the B $1s a'_1 \rightarrow e'$ and $1s a_1 \rightarrow a_2''$ transitions. See the text for details.

が主に分子平面内で起こっていることの傍証であろう。 B $1s \rightarrow 4e'$ 励起の場合も分子平面垂直方向速度成分を持つ 解離イオンは B⁺ であろうと推測されるが、残念ながら、 我々の測定からは結論できない。

4.3 B 1s⁻¹4e' 内殻励起状態の核の運動

B 1s^{-12a²}内殻励起状態には B 原子が分子平面から垂直 にわずかに変位した点にポテンシャル面のくぼみがあるた めに,平面構造を持つ基底状態からの励起の際に面外垂直 振動が励起された。この内殻励起状態での面外垂直振動が 傍観型オージェ過程に続いて起こる解離においてエネルギ ーを持った B⁺を選択的に生成することに大きな役割を担 っていた。B 1s→4e['] 励起の場合は内殻励起状態でどのよ うな核の運動が励起されるのだろうか?

Figure 10のイオン収量スペクトルには B 1s⁻¹⁴e' 状態 がヤン・テラー相互作用のために 2 つの状態に分裂する 様子が現れていた。また、 $3a'_1$ が主に B 1s⁻¹⁴e' と擬ヤン ・テラー結合するために誘起される禁制遷移が観測されて いた。ヤン・テラー相互作用も擬ヤン・テラー相互作用も 非対称伸縮振動(E')に沿った分子面内での核の変位に よることに注意して欲しい。1 次の振電相互作用では B 1s⁻¹⁴e' 状態に面外垂直振動に沿った核の変位は励起され ないのである。従って、4.2章で、わずかながら分子平面 に垂直な成分を持ったイオンの放出を確認したが、これは 内殻励起状態で面外垂直振動が励起されたことによるので はない。平面分子といえども零点振動のために平均すれば わずかに B 原子が平面から変位していること,傍観型オ ージェ終状態からの解離の際にわずかに面外方向への力を 受けたこと等のために解離イオンに分子平面垂直速度成分 が生じたものと思われる。

イオン収量スペクトルで見たように、B1s→4e'励起に よって非対称伸縮振動(E')が起こることが予想される。 しかし、この核の運動は分子面内で起こるために分子解離 の異方性には反映されない。では、どのようにすれば励起 後に進行する分子面内での核の運動を見ることができるだ ろうか? 内殻励起後に進行する核の運動は共鳴オージェ 電子放出と競合して起こることを思い出して欲しい。従っ て、共鳴オージェ電子放出にはこの核の運動が反映される はずである。B1s→4e'励起に伴い、Fig.11の2e'光電子 ビークの高エネルギー側に肩構造が現れていたが、この肩 構造がまさに内殻励起後にオージェ電子放出と競合して起 こった核の運動を反映しているのである。

スペクトルに反映される内殻励起状態における核の運動 の効果を調べるために、我々は二重縮退した B 1s⁻¹4e' 状 態におけるヤン・テラー相互作用とB1s⁻¹3aíとB1s⁻¹ 4e' との間の擬ヤン・テラー相互作用を考慮した振電相互 作用モデルを用いて吸収スペクトルとオージェスペクトル を計算した。光吸収は1次量子過程として、オージェ電 子放出については光励起から電子放出をひとつながりの 2次量子過程として取り扱った。計算の際に必要な内殻励 起状態の振電相互作用の強さを表わすパラメーターは吸収 スペクトルを再現する様に選んだ。計算して得られた吸収 スペクトルは Fig. 10に実験スペクトルと比較して示して ある。振電相互作用モデルを用いた計算で実験スペクトル を程よく再現できることがわかる。Figure 15に Fig. 11 の共鳴増幅した光電子スペクトルから非共鳴成分を差し引 いた差分スペクトルと振電相互作用モデルを用いて計算し たオージェスペクトルとを比較する。グラフの上に示した 横軸は電子の運動エネルギーである。2e'-1オージェ終状 態におけるヤン・テラー相互作用の強さを表わすパラメー ターは非共鳴光電子スペクトル24)を再現する様に選んだ。 つまりオージェスペクトルを計算する際にはフィッテイン グパラメーターがないことに注意して欲しい。にも関わら ず計算されたオージェスペクトルは実験スペクトルをよく 再現しており、ここで考えた振電相互作用モデルが妥当で あることがわかる。さらに、擬ヤン・テラーの効果を確か めるために、この項をゼロとおいてスペクトルを計算した ところ,吸収スペクトルでは B 1s→3a₁の遷移が消え,オ ージェスペクトルでは運動エネルギーが低い(束縛エネル ギーが高い)方向に形成されていた肩構造がほとんど現れ ないことがわかった。肩構造の出現には、擬ヤン・テラー 効果が本質的な役割を果たしていたのである。

内殻励起状態における核の運動とオージェスペクトル形 状との相関を直感的に理解するために,振電相互作用モデ

Figure 15. Comparison between the experimental and theoretical participator Auger spectra of BCl_3 at the B $1s \rightarrow 4e'$ excitation. The experimental spectrum (open circles) is obtained by subtracting the off-resonance spectrum from the on-resonance spectrum given in Fig. 11. The theoretical spectrum (solid line) is calculated using a vibronic model.

ルに基づいて計算した断熱ポテンシャルをFig. 16に示 す。横軸は、一本の B-Cl 結合が伸びる様に B 原子が変位 する方向を正,縮む方向を負にとってある。原点から変位 した位置では分子は C2v 対称性を持つ。B 1s-14e'(E')内 殻励起状態はヤン・テラー相互作用のためにA1とA2に 分裂し, A1 はさらに擬ヤン・テラー相互作用のために B $1s^{-1}3a'_1(A'_1)$ (C_{2v} では A_1) と結合する。Figure 16から 明らかなように、原点近傍でB1s⁻¹4e'に励起が起こる と、続いて B-Cl 結合が伸びる方向にも縮む方向にも核 (B原子)が変位する。この変位の進行と競合してオージ ェ電子放出が起こる。オージェ遷移はこのポテンシャル図 で垂直に起こり、オージェ電子の運動エネルギーは内殻励 起状態とオージェ終状態のエネルギー差で与えられること に注意して欲しい。内殻励起状態でA2に沿ってB-Cl結 合が縮む場合,擬ヤン・テラー効果は現れない。オージェ 遷移はA2終状態に向けて起こり、オージェ電子は非共鳴 光電子とほとんど同じエネルギー(原点におけるエネルギ 一差)を持つ。従って、電子の運動エネルギーの低い方向 に現れる肩構造の形成にはほとんど寄与しない。一方、内 殻励起状態でA1に沿ってB-Cl結合が伸びる場合,擬ヤ ン・テラー効果が働き、オージェ遷移は A_1 と A_2 の両方 の終状態に向けて起こる。A1内殻励起状態からA2オー ジェ終状態への遷移でオージェ電子が受け取るエネルギー は A1 オージェ終状態への遷移のそれよりも低いため,運 動エネルギーが低い(束縛エネルギーが高い)方向に肩構 造を形成する。参与型オージェスペクトルに観測された肩 構造はおもに B-Cl 結合が伸びる核の運動と競合したオー ジェ電子放出であり、その出現には内殻励起状態における 擬ヤン・テラー効果が重要な役割を担っていることがわか っていただけたかと思う。Figure 16を用いた説明では, 話を簡単にするために全対称伸縮振動の影響を無視した。 実際には内殻励起状態において全対称伸縮振動も高く励起

Figure 16. The adiabatic potentials for the core-excited states B $1s^{-1}4e'E'$ and B $1s^{-1}3a'_{1}A'_{1}$ and for the final ionic states $2e'^{-1}E'$ of the participator Auger process, plotted as a function of $\omega^{1/2}Q_{B-CI}$, where Q_{B-CI} is one of the coordinates of the asymmetric stretching mode Q_{e} and its positive direction corresponds to the elongation of a certain B–Cl bond length. ω is the frequency of the Q_{e} mode $(\hbar\omega=0.118 \text{ eV})$.

されており、スペクトルの見かけ上の広がりに寄与している。Figure 10および Fig. 15のスペクトル計算ではこの 全対称伸縮振動も考慮されていることを付記しておこう。

5. おわりに

本稿は、ここ数年にわたって行っている気相分子の内殻 励起と電子緩和、解離のダイナミクスに関する研究のう ち, BCl₃分子のBls励起に関してまとめたものである。 B 1s→2aⁿ/2 励起では内殻励起状態で面外垂直振動が励起さ れる。この振動モードに蓄えられるエネルギーは高々0.2 eV 程度であり、この核の運動は、電子緩和のスペクトル には顕著に現れないが、電子緩和後の解離過程に影響を及 ぼし,B+イオンが解離に際して選択的にエネルギーをも らい面外垂直方向速度成分を持って飛び出す準備をする役 割を担っていることがわかった。一方, B1s→4e' 励起で は内殻励起状態で主に対称・非対称伸縮振動が励起され る。これらの振動は分子平面内での核の運動であるため に, B1s→2aⁿ/2 励起の場合のような特殊な解離パターンを 引き起こすことにはならない。しかし、これらの振動モー ドに蓄えられるエネルギーは1eV以上あり、この核の運 動はオージェ電子スペクトルに顕著に反映されることがわ かった。2e'共鳴光電子スペクトルに出現する肩構造は明 らかにこの核の運動を反映するものである。B 1s⁻¹4e'内 殻励起状態間のヤン・テラー相互作用および B 1s-13a1 と の擬ヤン・テラー相互作用を考慮した振電相互作用モデル を用いた吸収スペクトルとオージェスペクトルの計算は, 実験結果をよく再現し、肩構造の出現に擬ヤン・テラー相 互作用が本質的な役割を果たしていることを明らかにし

た。

内殻励起分子の電子緩和と解離のダイナミクスは多くの 中間状態が関与することもあり,非常に複雑である。しか し,軟X線光学・軟X線分光技術の進歩により,放射光 施設で非常に良質な軟X線が得られるようになり,様々 な実験的・理論的手法等の進歩と相俟って,近年,驚くべ き速さで解明が進んでいる。本稿を通してこの分野の謎解 きの面白さをわかってもらえれば幸いである。ここに紹介 した複合的な実験手法は非常に有力なものであるが,電子 分光,イオン分光,同時計測における各々の測定粒子のエ ネルギー分解能が必ずしも十分ではない。現在,これらの エネルギー分解能の飛躍的向上を目指すべく,装置の一新 を図っている。是非,近い将来,新たな装置による新たな 研究成果を紹介したいものである。

謝辞

本研究は多くの共同研究者の協力を得て始めて成し遂げ られたものです。共同研究者として本研究を支えて下さっ た東北大学の千葉技官と佐藤教授,上智大学の田中大教授 と北島昌史助手および学生の皆さん,筑波大学の早石達司 助教授,大阪府立大学の田中智助教授に感謝いたします。 本研究には,一部,文部省科学研究費補助金および松尾学 術振興財団研究助成金を使わせていただきました。本研究 に関する実験は,PFの共同利用実験として課題番号: 97G302のもとで遂行されました。

参考文献

- 1) 足立純一,小杉信博:日本物理学会誌 52,96 (1997).
- M. Neeb, J. E. Rubensson, M. Biermann and W. Eberhardt: J. Electr. Spectrosc. Relat. Phenom. 67, 261 (1994).
- S. Sundin, F. Kh. Gel'mukhanov, H. Ågren, S. J. Osborne, A. Kikas, O. Björneholm, A. Ausmees and S. Svensson: Phys. Rev. Lett. 79, 1451 (1997).
- O. Björneholm, S. Sundin, S. Svensson, R. R. T. Mrinho, A. Naves de Brito, F. Gel'mukhanov and H. Ågren: Phys. Rev.

Lett. 79, 3150 (1997).

- M. Simon, C. Miron, N. Leclercq, P. Morin, K. Ueda, Y. Sato, S. Tanaka and Y. Kayanuma: Phys. Rev. Lett. 79, 3857 (1997).
- K. Ueda: J. Electr. Spectrosc. Relat. Phenom. 88-91, 1 (1998).
- 7) T. D. Thomas, N.Berrah, J. Bozek, T. X. Carroll, J. Hahne, T. Karlsen, E. Kukk and L. J. Sathre: Phys. Rev. Lett. 82, 1120 (1999).
- 8) E. Kukk, J. D. Bozek, J. A. Sheehy, P. W. Langhoff and N. Berrah: J. Phys. B 33, L51 (2000).
- 9) 田中 智, 萱沼洋輔, 上田 潔:日本物理学会誌 53,18 (1999).
- K. Ueda, K. Ohmori, M. Okunishi, H. Chiba, Y. Shimizu, Y. Sato, T. Hayaishi, E. Shigemasa and A. Yagishita: Phys. Rev. A 52, R 1815 (1995).
- K. Ueda, Y. Shimizu, K. Nagao, H. Chiba, M. Okunishi, K. Ohmori, J. B. West, Y. Sato, T. Hayaishi, H. Nakamatsu and T. Mukoyama: Phys. Rev. Lett. 79, 3371 (1997).
- Y. Muramatsu, K. Ueda, Y. Shimizu, H. Chiba, K. Amano,
 Y. Sato and H. Nakamatsu: J. Phys. B 32, L213 (1999).
- K. Ueda, M. Simon, C. Miron, N. Leclercq, R. Guillemin, P. Morin and S. Tanaka: Phys. Rev. Lett. 83, 3800 (1999).
- 14) K. Ueda *et al.*: submitted:
- 15) Y. Shimizu *et al.*: in preparation for publication.
- 16) Y. Muramatsu et al.: in preparation for publication.
- 17) D. Goutier and L. A. Brunelle: Chem. Phys. Lett. 18, 460 (1973).
- 18) E. Ishiguro, S. Iwata, Y. Suzuki, A. Mikuni and T. Sasaki: J. Phys. B 15, 1841 (1982).
- K. Ueda, H. Chiba, Y. Sato, T. Hayaishi, E. Shigemasa and A. Yagishita: J. Chem. Phys. 101, 7320 (1994).
- 20) D. Dill, J. R. Swanson, S. Wallace and J. L. Dehmer: Phys. Rev. Lett. 45, 1393 (1980).
- S. Tanaka, Y. Kayanuma and K. Ueda: Phys. Rev. A 57, 3437 (1998).
- 22) J. Adachi, N. Kosugi, E. Shigemasa and A. Yagishita: J. Chem. Phys. 107, 4919 (1997).
- 23) K. Ueda, Y. Shimizu, H. Chiba, M. Okunishi, K. Ohmori, Y. Sato, E. Shigemasa and N. Kosugi: J. Electr. Spectrosc. Relat. Phenom. 79, 441 (1996).
- 24) A. W. Potts, H. J. Lempka, D. G. Streets and W. C. Price: Phil. Trans. Soc. Lond. A 268, 59 (1970).

きいわーど

振電相互作用

分子の電子振動状態の厳密な記述には、電子と原子核を含 めた多体問題を量子力学的に解くことが必要であるが、特殊 な場合を除いてこれと不可能である。そこで、一般には、電 子と原子核についての方程式を分離し、これらを解いて得ら れる解を近似解として用いる。この近似を断熱近似あるいは ボルン・オッペンハイマー近似と呼ぶ。この近似解を出発点 として、摂動法によってより高い近似の解を求める際に、摂 動として扱われる項を振電相互作用と総称する。振電相互作 用は近似的解法の必要から便宜的に導入されるものであり、 物理的な実態があるわけではない。一般には、ボルン・オッ ペンハイマー近似の範囲で十分正確に分子の性質を記述する ことができるが、この近似の範囲で縮退した電子状態やある いは近接した電子状態がある場合には振電相互作用の効果が 顕著に現われることがある。本稿に議論されるヤン・テラー 効果(ボルン・オッペンハイマー近似の範囲で縮退した電子 状態における振電相互作用効果)や擬ヤン・テラー効果(近 接した電子状態における振電相互作用効果)はまさに振電相 互作用の効果が顕著になった例である。