新博士紹介

1.	氏名 仙波伸也					
2.	論文提出大学 広島大学					
3.	学位種類博士(理学)					
4.	取得年月日 2000年3月					
5.	題目 光電子・逆光電子分光によるマンガンプニクタ					
	イドの電子状態の研究					

6. 要旨

3d 遷移金属化合物の中でとりわけ NiAs 型構造をもつ 物質は、多様な磁気秩序や伝導特性など興味ある物性を示 す。これらの物性には遷移金属元素の 3d 電子が遍歴した り、局在したりすることが大きく寄与している。したがっ て、それらの物性を理解するにあたって、遷移金属元素の 3d 電子状態の情報が基礎となることは言うまでもない。 一般に、価電子帯および伝導帯の電子状態を直接実験的に 調べる手段として光電子分光、逆光電子分光法があり、そ の情報による物性の理解が進められてきた。

本研究では、3d 遷移金属化合物の中で、唯一全てが強 磁性相をもつ物質郡であるマンガンプニクタイド MnX (X=P, As, Sb, Bi)に着目した。MnX においては、MnP から MnBiへとX の原子番号が大きくなるに伴い、磁気 モーメント、キュリー温度、磁気光学効果等が系統的に増 大する¹⁾。この傾向と電子状態との関連を明らかにするた めに価電子帯及び伝導帯の電子状態、特に Mn 3d 状態の 陰イオン依存性を調べた。

MnSb についてはホットウォールエピタキシー法を用い て GaAs(001) 基板上に薄膜単結晶の成長を行ない,反射 型高速電子線回折により,その結晶性・配向性を評価し た。MnP, MnAs²⁾に関してはブリッジマン法で,また MnBi についてはアーク溶解を用いてバルク多結晶を作成 し,X線回折,電子プローブ微小分析により結晶構造並 びに組成を評価した。作成した試料に対し,超高真空中で 清浄表面作成後, *in situ* で同一の清浄表面に対して真空 紫外光電子・逆光電子分光実験を行なった。また,MnBi に対しては,広島大学放射光科学研究センターにて Mn 3p-3d 吸収領域付近(48~80 eV)において光電子分光実 験を行った。

MnSb に対して得られた光電子・逆光電子スペクトル, バンド計算による全状態密度, Mn 部分状態密度³⁾並びに 状態密度に対し実験の分解能と寿命による幅広がりを考慮 した計算スペクトルの比較を Fig. 1 に示す。Mn 3d 軌道 は NiAs 型構造のもつ三方対称場の下で, eg, e1g と a1g 対 称性をもつ軌道に分裂する。軌道の対称性から eg 軌道は Sb 5p 軌道と強く混成し遍歴性が強くなるが, e1g と a1g 軌道は Sb 5p 軌道とはほとんど混成せず局在性が強くな る。光電子・逆光電子スペクトルに見られる主ピーク A, C は, それぞれバンド計算の結果に見られる分散の小さい バンド, 即ち局在性の強い e1g と a1g 対称性をもつ Mn

Figure 1. (a) Comparison of the photoemission and inverse-photoemission spectra of MnSb with the calculated spectra obtained by convoluting the theoretical DOS's³⁾ with the instrumental resolution and lifetime broadening. (b) The theoretical total (solid lines) and Mn 3d partial (shaded areas) DOS's³⁾.

Figure 2. (a) Photoemission and inverse-photoemission spectra of MnAs, MnSb and MnBi. (b) Comparison of the photoemission and inverse-photoemission spectra of MnP with the calculated spectra obtained by convoluting the theoretical DOS's⁷ with the instrumental resolution and lifetime broadening.

3d ↑ と Mn 3d ↓ 状態に対応している。この主ピーク間の エネルギー差から Mn 3d 交換分裂エネルギー (Δ_{ex})を 4.0±0.2 eV と実験的に見積もった。一方,構造 B, D は, バンド計算に立脚すると,主に Mn 3d(e_g)-Sb 5p 混成に よる分散の大きいバンドに対応した構造と考えられる。

次に NiAs 型構造をもつ MnAs, MnSb, MnBi の光電子
・逆光電子スペクトルの比較を Fig. 2(a)に示す。MnSb
同様, MnAs, MnBi に対して得られた光電子・逆光電子
スペクトルに現れる特徴もバンド計算の結果と定性的によ

く対応している^{4,5)}。三者に対して見積もられた⊿exは, バンド計算から得られる値(~3 eV)に比べ若干大きく はなっているが、3つの物質をとおしてほぼ同じ値である というバンド計算の傾向と対応している。比較から, Mn 3d↑状態に起因するピークの半値幅(光電子スペクト ル),並びに Mn 3d↓状態を含む構造のバンド幅(逆光電 子スペクトル)が MnBi, MnSb, MnAs という順に増加す る傾向が見い出された(Table 1(A))。この傾向は Mn 3d 軌道と Xp 軌道間の混成の強さが陰イオンに依存して いる事に起因していると予測できるため, DV-Xα法を用 いた分子軌道計算6)による定性的な解析を行った。計算か ら得られた中心 Mn と最近接 (Sb), 第二近接原子 (Mn) 間の軌道の重なりは、両者とも MnBi, MnSb, MnAs とい う順に大きくなる。最近接原子間は Mn-eg 軌道と X-p 軌 道間,第二近接原子間はMn-a1g軌道とMn-a1g軌道間の 混成に対応しており、Mn-X間だけでなく、Mn-Mn間に 対しても混成の強さの陰イオン依存性が確認された(Table 1(B))。しかしながら、それでもなお Mn-X 間の混成 が三者をとおして Mn-Mn 間に比べ比較的強いというこ とは、MnX における強磁性秩序には p-d 混成による超交 換相互作用が大きく寄与していることを示唆している。一 方, Mn 3p-3d 吸収領域における光電子スペクトルでは, 中間状態 3p53d6 を経たオージェ崩壊が優勢的であり,直 接再結合による顕著な共鳴増大は確認されなかった。この 結果は、MnBi中のMn 3d 電子の遍歴性が比較的強いこ

Table 1. A) Characteristic values in a unit of eV in the experimental photoemission and inverse-photoemission spectra. FWHM $(3d\uparrow)$; FWHM of main peak in photoemission spectrum at $h\nu=40.8 \text{ eV}$, Width $(3d\downarrow)$; width of main peak in iverse-photoemission spectrum at $h\nu=40.8 \text{ eV}$, Δ_{ex} ; exchange splitting energy. B) Bond overlap populations for Mn–X and Mn–Mn. C) Unit volume which is defined as a volume of unit cell divided by the number of included pairs of Mn and X atoms. The values are given in a unit of Å³

		MnP	MnAs	MnSb	MnBi
A)	FWHM (3↑)	_	2.3	1.9	1.7
	Width $(3d\downarrow)$		4.0	3.2	2.8
	Δ_{ex}	2.2 ± 0.2	4.1 ± 0.2	4.0 ± 0.2	4.1 ± 0.2
B)	Mn-X		0.368	0.331	0.324
	Mn–Mn	-	0.133	0.127	0.111
C)	Unit Volume	24.7	68.7	86.7	95.7

とを示している。他の MnX に関しても同様であると考えられる。

MnPの光電子・逆光電子スペクトル(Fig. 2(b))の特 徴は、Mn 3d↓状態に起因する構造(図中↓)が伝導帯で はなく価電子帯に位置するなど、他者のものとは極端に異 なっているものの、バンド計算の結果⁷⁾を基にした計算ス ペクトルとは良く対応している。MnP は NiAs 型構造か ら比較的大きく歪んだ MnP 型構造をとる。MnP の Mn 3d バンド幅が、他者のものと比べてかなり広がるのは、 結晶構造の違いに加え⁸⁾、Mn と X の一対が占める体積が MnP では極端に小さいために p-d 混成、d-d 混成がより 強くなるためと考えられる(Table 1(C))。

MnXの光電子・逆光電子スペクトルの系統的な解析か ら, MnPからMnBiへ変化するに従いMn3dバンド幅 が狭まり,Mn3d電子の局在性が強くなる事がわかった。 この傾向が磁気モーメントに見られるenhancementの大 きな要因であると結論した。磁気光学効果に見られる傾向 にもMn3d電子の局在性の系統的な増大が大きな役割を 果たしていると考えられる。しかし、磁気光学効果にはス ピン-軌道相互作用の影響が大であり、一概にMn3d電子 の局在性だけで議論することは難しいことを注意したい。

以上,本研究では,MnX について薄膜単結晶,バルク 多結晶の試料作成を行い,光電子・逆光電子スペクトルの 測定・解析から,p-d 混成,d-d 混成の大きさに対する陰 イオン依存性を明らかにした。今後,薄膜単結晶成長並び に放射光光電子分光,共鳴逆光電子分光による電子状態の その場観測が組み合わされた手法は,スピン状態やバンド 分散の精密決定によるスピン電子状態に対する詳細な情報 の抽出を可能とし,物性と電子状態との関係への理解を新 たに導くものと期待される。

参考文献

- 1) P. Ravindran et al.: Phys. Rev. B59, 15680 (1999).
- 2) MnAs バルク多結晶には P を 5 % ドープしている。
- 3) R. Coehoorn et al.: Phys. Rev. B31, 1980 (1985).
- M. Shirai and Y. Tokioka: J. Elec. Spec. Relat. Phenom. 88– 91, 357 (1998).
- 5) R. Coehoorn and R. A. de Groot: J. Phys. F: Mer. Phys. 15, 2135 (1985).
- 6) H. Adachi et al.: J. Phys. Soc. Jpn. 45, 875 (1978).
- A. Yanase and A. Hasegawa: J. Phys. C: Solid State Phys. 13, 1989 (1980).
- 8) R. Podoloucky: J. Magn. Magn. Mater. 43, 204 (1984).

(受付番号00061)