MOSTAB による放射光 X 線ビームの安定化

工藤統吾^{1*},西野吉則²,鈴木基寬¹,谷田 肇¹, 古川行人¹,広野等子¹,石川哲也^{1,2}

1財団法人高輝度光科学研究センター*,2理化学研究所播磨研究所

Stabilization of Synchrotron Radiation X-ray Beam by MOSTAB

Togo P. KUDO¹, Yoshinori NISHINO², Motohiro SUZUKI¹, Hajime TANIDA¹, Yukito FURUKAWA¹, Toko HIRONO¹ and Tetsuya ISHIKAWA^{1,2}

¹SPring-8/JASRI, ²SPring-8/RIKEN

Abstract

Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB.

1. はじめに

近年のマイクロビーム技術やコヒーレント光利用技術な どの進歩により,放射光 X 線ビームの安定化は重要性を 増している。安定な光源を得るため,蓄積リングにおいて は軌道安定化の試みが行われている¹⁾。それに加え,輸送 チャネルにおける X 線光学系の安定化は重要な課題であ る。特に分光器は光源からの放射パワーを直接受けるた め,結晶ひずみによるドリフトや冷却系による振動に対し て適切な安定化策を施す必要がある。熱負荷による結晶ひ ずみの対策として,SPring-8 ではピンポスト水冷²⁾や液体 窒素冷却³⁾などが成果を挙げている。二結晶分光器の振動 は二結晶の平行度の不安定性を引き起こし,下流の実験ハ ッチにおける X 線ビームの強度,位置およびエネルギー に影響を及ぼす。

1983年に Krolzig らにより monochromator stabilization (MOSTAB)を用いた分光器下流の放射光 X 線ビーム強 度の安定化が報告された^{4,5)}。MOSTAB は分光器の二結 晶平行度を閉ループフィードバックで制御して,分光器下 流での X 線ビームの安定化を行うシステムである。この 制御は分光結晶に取り付けた平行度微調整用のピエゾ素子 にフィードバック電圧をかけることにより実現される。 MOSTAB は第三世代を含む世界各国の放射光施設で開発 され利用されている⁶⁻⁹⁾。国内でも類似の手法で放射光 X 線ビーム位置の安定化に取り組んだ例がある¹⁰⁾。しかし MOSTAB そのものは普及していないのが現状である。本 稿では MOSTAB の基本原理および SPring-8 で製作した DSP 搭載型 PID 制御 MOSTAB を使った放射光 X 線ビー ム安定化の実例を示す。

2. MOSTAB による X 線ビーム強度安定化

Krolzig らの開発した MOSTAB の構成を Fig. 1 に示 す⁴⁾。このシステムでは、分光器の上下流に置かれた 2 台 の電離箱により X 線ビーム強度を測定し、上流の強度 U₁ で下流の強度 U₂ を規格化した値 U₀を安定化させる。こ の規格化は、蓄積リング電流の減少に伴う X 線ビーム強

Figure 1. A diagram of the MOSTAB system reported by Krolzig *et al*⁴⁾. X-ray beam intensities before (U_1) and after (U_2) the monochromator are measured using two ionization chambers. The normalized x-ray beam intensity $(U_0 = U_2/U_1)$ is compared to a reference value (U_{ref}) , and the difference is fed to an integration circuit. The output (U_{ν}) is inverted/non-inverted and amplified by a high voltage amplifier. The feedback voltage (U_P) is applied to a piezo electric transducer attached to the 2nd crystal of the double-crystal monochromator.

* 財団法人高輝度光科学研究センター 〒679-5198 兵庫県佐用郡三日月町光都 1-1-1

TEL: 0791-58-1810 FAX: 0791-58-1805 E-mail: kudo@spring8.or.jp

Figure 2. A schematic rocking curve of a double-crystal monochromator: the normalized intensity U_0 as a function of the piezo voltage U_p . MOSTAB stabilizes the U_0 at the reference value U_{ref} and higher (A) or lower (B) side of the rocking curve is selectable.

度の減少を補正するためである。この補正により MOSTABは分光器の二結晶平行度を一定に保つ。ピエゾ 素子へのフィードバック電圧 Uv は、

$$U\nu(t) = \frac{1}{T_i} \int_{-\infty}^{t} (U_{ref} - U_0(t')) dt'$$
(1)

で与えられる。ここで、 T_i は積分回路時定数。 U_{ref} はX 線ビーム強度目標値、 $U_0(t')$ は時刻t'におけるX線ビー ム強度である。偏差 U_{ref} ー $U_0(t')$ の積分値に適当なゲイン をかけてフィードバック電圧を計算する積分型(I)制御 が採用されている。また、式(1)の $U_0 \approx U_2$ に置き換える と、蓄積リング電流減少にかかわらず分光器下流のビーム 強度を一定にするフィードバック電圧を得る。この場合 U_1 の測定は不要である。

Fig. 2 は、ピエゾ電圧をスキャンして得られる回折強 度曲線の模式図である。ピエゾ電圧を変化させることによ り、分光器のデチューニング角 $\Delta \theta$ (二結晶の平行位置か らの相対的ずれ角)が変わる。二結晶が完全に平行な場合 ($\Delta \theta = 0$)回折強度は極大となる。 U_{ref} 値を示す点線が回 折強度曲線と交わる A 点または B 点においてフィードバ ック系は安定する。A 点または B 点の選択は、Fig. 1 に おける反転アンプ (Inverter)によりフィードバック出力 極性を切り換えることにより行う。更に Krolzig らは如何 なるピエゾ電圧初期値であっても、安定点を自動的に見つ け出すように工夫した⁴。

Fig. 3は, SPring-8 BL29XU での MOSTAB による分 光器下流の X 線ビーム強度安定化試験の結果である。蓄 積リング電流の減少にかかわらず分光器下流のビーム強度 を一定にする方法を採用した。X 線ビーム強度時間変動 は, MOSTAB を用いない場合標準偏差で6.1×10⁻³であ ったが, MOSTAB を用いることにより3.3×10⁻⁴に改善 した。MOSTAB を用いない場合に見られる周期400秒程 度の X 線ビーム強度変動は分光結晶の冷却系の温度変化 に起因すると考えられる。

ここで用いたアナログ I 制御型 MOSTAB 用 NIM モジ

Figure 3. The long-time stability of the x-ray beam intensity with and without MOSTAB. The values were normalized by their averaged value. The standard deviations of the x-ray beam intensities were 6.1×10^{-3} without MOSTAB and 3.3×10^{-4} with MOSTAB.

ュールは、株式会社帝国電機製作所11)により製作された。

3. MOSTAB による X 線ビーム位置安定化

MOTABとX線ビーム位置モニターを組み合わせることにより、X線ビーム位置の安定化も可能である¹²⁾。X線ビーム位置安定化は、例えば、ピンホールによるマイクロビームを用いた実験、不均一試料を用いた実験、X線のコヒーレンスを要する実験に有効であると考えられる。

更にX線ビーム位置を制御対象とした MOSTAB には 別の意義もある。X線ビーム強度を制御対象とした MOSTAB は、 $\Delta\theta$ に対してX線ビーム強度が単調増加ま たは単調減少する領域のみで実現可能である。従って回折 強度曲線の極大点($\Delta\theta=0$)に目標値を設定することが困 難である。回折強度極大点での安定化ができないことは、 X線フラックスを最大限生かすべき実験において不利で ある。一方、X線ビーム位置を制御対象とした場合、下 に示すように $\Delta\theta=0$ を含む任意の $\Delta\theta$ での安定化が可能 である。従ってX線ビーム位置の安定化、X線ビーム強 度の最大化と安定化という複数の利点が得られる。

通常の二結晶分光器では,垂直方向のX線ビーム位置は,

$$2l\Delta\theta$$
 (2)

で与えられる。ここで*l*は分光器から X 線ビーム位置検 出器までの距離を表し、 $\Delta \theta = 0$ での X 線ビーム位置を原 点にとっている。この場合 X 線ビーム位置は $\Delta \theta = 0$ 近傍 において単調増加なので、 $\Delta \theta = 0$ に目標値を設定できる。

Fig. 4 は、X 線ビーム強度および位置の $\Delta\theta$ 依存性測定 の結果を示す。測定は SPring-8 BL29XU で行った。X 線 ビーム強度は電離箱で測定し、位置は位置敏感電離箱 (PSIC)¹³⁾で測定した。X 線ビーム位置は $\Delta\theta$ に対して線 型に変化し、その傾きは式(2)から得られる値と矛盾しな

Figure 4. The vertical position and the intensity of the x-ray beam as a function of the detuning angle. The measurement was performed at 9 m downstream from the Si(111) double-crystal monochromator. The x-ray energy was 10 keV.

Figure 5. A MOSTAB module developed at SPring-8. This NIM 2 unit module includes a DSP and a microprocessor which is remotecontrollable through an Ethernet using the TCP/IP protocol. The module was designed and manufactured by TEIKOKU DENKI SEISAKUJO Co., Ltd.

い結果を得た。

我々は,X線ビーム位置安定化を実現するため,PID 制御演算型 MOSTAB 用 NIM モジュールを開発した (Fig. 5)。製作は株式会社帝国電機製作所に依頼した。本 モジュールは PSIC の信号からX線ビーム位置演算を行 う機能を備えている。更に,蓄積リング電流値を SPring-8データベースシステムから LAN 経由で取り込んで,蓄 積リング電流値で規格化されたX線ビーム強度を演算す る機能も有する。これら各種演算方式の充実と,パラメー タ設定精度やユーティリティー向上のために DSP を用い た。

我々は、この MOSTAB を **Fig. 6** に示す構成で用い、 SPring-8 BL29XU において、X 線ビーム位置安定化実験 を行った。回折強度極大($\Delta \theta = 0$)に対応する位置にX 線ビームを安定化させた。**Fig. 7(a)**は MOSTAB により

Figure 6. A diagram of MOSTAB system for stabilizing x-ray beam position. PSIC gives two signals from its upper (U) and lower (L) electrodes. A vertical beam position signal (P_0) is computed by subtracting the L signal from U signal, and then dividing by their sum. The difference between P_0 and a reference value (P_{ref}) is fed to a PID control circuit. The output is inverted/non-inverted and applied to the piezo controller. A piezo electric transducer can be optionally attached to the first crystal of the SPring-8 standard monochromator.

Figure 7. (a): The long-time stability of the vertical x-ray beam position with and without the x-ray beam position stabilization using MOSTAB. The standard deviations of the x-ray beam positions were 1.9 μ m without MOSTAB and 0.25 μ m with MOSTAB. (b): The long-time stability of the normalized x-ray beam intensity. The standard deviations of the normalized x-ray beam intensities were 6.1 × 10⁻³ without MOSTAB and 9.7 × 10⁻⁴ with MOSTAB. Measurements with or without MOSTAB of Fig. 7(b) was done simultaneously with the measurement of Fig. 7(a).

X線ビーム位置のドリフトが顕著に抑制されたことを示 している。Fig.7(b)はFig.7(a)と同時に測定されたX 線ビーム強度の時間変動データを示す。X線ビーム位置 安定化と同時にX線ビーム強度の安定化も達成された。

4. XAFS 測定での MOSTAB の利用

我々は MOSTAB の応用例として XAFS 測定を行った。 XAFS 測定においては X 線エネルギーの安定性も問題と なる。 $\Delta\theta$ の変化は分光器下流の X 線ビームエネルギーの 変化をもたらすため, MOSTAB はエネルギーの安定化に も貢献する。エネルギー変化は第一結晶の $\Delta\theta$ の関数とし て,

$$\frac{3}{2}\Delta\theta E \cot\left(\theta_{B}\right) \tag{3}$$

で与えられる。ここで*E*は X 線のエネルギー, θ_B はブラ ック角である。**Fig.8**は, SPring-8 BL29XU で測定され た, $\Delta \theta$ とエネルギー変位の関係を示す。エネルギー変位 は白金の L_m 吸収端のエネルギー位置を測定することによ り決定した。(理論から予想される通り) エネルギーは $\Delta \theta$ に関して線型に変化し,その傾きは(3)式から計算される

Figure 8. The energy shift of a monochromatic x-ray beam as a function of the detuning angle, compared with the rocking curve profile. The energy shifts were determined from the platinum L_m absorption edge positions measured at a different detuning angle.

Figure 9. The long-time stability of the KBr absorption coefficient measured at the bromine K absorption edge with and without the x-ray beam position stabilization using MOSTAB.

値とほぼ一致した。

Fig. 9に KBr 粉末試料に対する X 線吸収係数の時間変 化を示す。測定は,SPring-8 BL38B1 において臭素 K 吸 収端(13.478 keV)に X 線のエネルギーを固定して行っ た。吸収測定は,2台の電離箱を試料の上下流に配置した 透過法を用いて1秒積算で行った。MOSTABを用いた測 定では,垂直方向の X 線ビーム位置モニターに PSIC を 用いて $\Delta \theta = 0$ に対応する位置に X 線ビームを安定化させ た。KBr 粉末の吸収係数の10分間におけるドリフトは安 定化を行わない場合4.0×10⁻³であったが,MOSTAB を 用いることにより2.2×10⁻⁴へと改善された。これは不均 一試料の吸収測定において,MOSTAB による X 線ビー ム位置およびエネルギーの安定化が有効であることを示 す。

SPring-8 標準分光器¹⁴⁾でエネルギースキャンを行う場 合,分光器のZカムステージの加工誤差のため,異なる エネルギー(分光器の θ)に対し,二結晶平行度がわずか にずれることがある。この対策として,エネルギーを変え る毎に $\Delta \theta$ を調整し,二結晶平行度を保つ操作が広く行わ れている。MOSTAB を用いれば,フィードバック系がこ のエネルギー毎の平行度のずれを自動補正し,平行度を維 持したエネルギースキャンが可能となる。

Fig. 10は, SPring-8 BL38B1 で行われたタングステン 粉末試料の EXAFS 測定結果を示す。測定は透過法を用 いて0.1秒積算で行った。Fig. 10(a)は,各エネルギー点 でピエゾ電圧スキャンによる二結晶平行度最適化を行う従 来型の測定,Fig. 10(b)は MOSTAB を用い自動的に二 結晶平行度最適化を行った測定を示す。MOSTAB を用い ることにより,ピエゾ電圧スキャンに要する時間が節約で きるため,従来の方法と同等の精度での EXAFS 測定を より短い総測定時間で行うことが可能となった。

Figure 10. EXAFS (multiplied by k^2 and a hanning function) of a tungsten powder sample. The solid line is for measurement with the two-crystal parallelism optimization of monochromator by a rocking scan using piezo at each energy point (piezo tune), and the dashed line is for measurement with MOSTAB. The data with piezo tune is vertically shifted for better display.

5. 使用上の留意点

これまでの我々の MOSTAB の評価実験により明らか になった, MOSTAB を使用する上での留意すべき点を以 下にまとめる。

(1) MOSTABは,X線ビームの強度や位置の変動が分 光器に起因する場合にのみ有効である。このため他の光学 系や光源(加速器)の安定性の向上が併せて重要である。

(2) 高エネルギー X線では回折角度幅が狭くなるので, *Δθ* がわずかにずれると X線ビーム強度が急激に減少す る。従って PSIC での X線ビーム位置計測と安定化が困 難になる。

(3) MOSTAB を SPring-8 標準分光器と組み合わせ用 いた場合,5Hz以下の周波数成分への振動抑制が有効で あった。現状では、ピエゾ素子が数100kgと見積もられ るステージ類をも含め動かす仕組みとなっており、この大 きな慣性質量により速いフィードバック応答が困難であ る。より高周波成分の振動抑制には、分光器におけるピエ ゾ素子の取り付け位置の変更などが必要となる。

謝 辞

(㈱帝国電気製作所の大竹英二氏,及び㈱三菱電機エンジ ニアリングの森本一郎氏にDSP型並びにアナログ型 MOSTABモジュールを設計製作していただきました。また,SPring-8スタッフの玉作賢治氏,矢橋牧名氏には BL29XUでの実験で諸々支援いただきました。大端通氏 はDSP型 MOSTABの制御仕様につき相談にのっていた だきました。井上忍氏はLabViewによるDSP型 MOSTAB 制御プログラムを工夫していただきました。宇 留賀朋哉氏,坂田修身氏からは,BL01B1 及び BL13XU での MOSTAB 使用により貴重なコメントをいただきま した。皆様に感謝いたします。

参考文献

- 2nd Workshop on Beam Orbit Stabilization, SPring-8, Japan, (December 4–6, 2002) etc.
- 2) T. Ishikawa, H. Yamazaki, K. Tamasaku, M. Yabashi, M. Kuroda and S. Goto: Proc. SPIE 3448, 2 (1998).
- K. Tamasaku, M. Yabashi, D. Miwa, T. Mochizuki and T. Ishikawa: Proc. SPIE 4782, 132 (2002).
- A. Krolzig, G Materlik, M.Swars and J. Zegenhagen: Nucl. Instr. Meth. 219, 430 (1984).
- A. Krolzig, G. Materlik and J. Zegenhagen: Nucl. Instr. Meth. 208, 613 (1983).
- 6) http://www.aps.anl.gov/xfd/SRI-1ID/Mostab.html
- 7) http://www.esrf.fr/exp_facilities/ID1/user_guise/opthutch /mostab.html
- http://www.chess.cornell.edu/Operations/Hardware/ MoStab/MoStab.htm
- http://www.embl-hamburg.de/researchactivities/ brief_guide.html
- A. Koyama, S. Sasaki and T. Ishikawa: *Rev. Sci. Instr.* 60, 1953 (1989).
- 11) 株式会社帝国電機製作所 〒679-4395 兵庫県揖保郡新宮
 町平野60番地 TEL:0791-75-0471
- 12) R. F. Fischetti, R. Heurich, D. Perry, S. Stepanov and E. Kondraskina: *Rev. Sci. Instr.* 73, 1518 (2002).
- 13) K. Sato, H. Toyokawa, Y. Kohmura, T. Ishikawa and M. Suzuki: Proc. SPICE 3774, 114 (1999).
- 14) M. Yabashi, H. Yamazaki, K. Tamasaku, S. Goto, K. Takeshita, T. Mochizuki, Y. Yoneda, Y. Furukawa and T. Ishikawa: Proc. SPIE 3773, 2 (1999).