実験技術 ~~~~~

磁性材料と XMCD による磁性研究

圓山 裕*, 石松直樹

広島大学大学院理学研究科 〒739-8526 東広島市鏡山1丁目3-1

Studies of Magnetic Materials Using XMCD

Hiroshi MARUYAMA and Naoki ISHIMATSU

Department of Physical Sciences, Graduate School of Science, Hiroshima University 1–3–1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8526, JAPAN

Abstract

X-ray magnetic circular dichroism (XMCD) has been widely applied to studies of magnetism and magnetic materials. We review recent developments not only in the experiment using helicity-controlled XMCD technique but also in understanding of magnetic states in the following practical materials: permanent magnet, magneto-optical device, and magnetic recording media. It is noted that the XMCD is suitable for studying the magnetic properties originated in the spin-orbit interaction. Feasibility for fundamental research and technological application is presented.

1. はじめに

磁性材料は現代社会に不可欠の素材のひとつである。例 えば、コンピュータと磁気記録媒体に、光アイソレータな ど情報化社会を支える光通信素子に、モーターと発電機、 変圧器など省エネルギーと地球環境の保全に関わる機器に も各種の磁性体が利用されている。更に、磁性材料の高性 能化は軽薄短小を標榜する現代の科学技術の潮流を推し進 めている。ナノ磁性粒子、磁性薄膜などの創製は近未来の スピントロニクスの到来を予想させる。放射光の分野で も、高性能希土類磁石は挿入光源に無くてはならない材料 である。一方、基礎研究の分野でも強相関電子系の磁性と 電子状態、磁気秩序状態と相転移、結晶磁気異方性、局在 性と遍歴性など話題に事欠かない。

磁性は「巨視的に観測される量子現象」¹⁾と云われる。 その担い手は磁性電子であり,電子間にはたらく交換相互 作用と電子相関がその本質である。固体中の電子の磁気状 態は構成原子の電子構造や物質の結晶構造とバンド構造に 強く依存するために,多様な磁気特性が外場に対する応答 として観測される。したがって,物性研究では「構造と磁 性」「局所構造と電子状態」に関する視点が不可欠と考え られる。構造の視点から物性を理解する研究の中で, XAFS が磁性材料にも応用されてきた。しかし磁性に注 目するとき,XAFS から磁気状態に直接関係する情報を 取得することはできない。この目的には円偏光を用いた X線磁気円二色性(XMCD)が相応しく,ミクロな磁気 プローブとして既に定着している。

本稿では、磁性材料の磁気特性の評価に用いられる XMCDの実験手法を紹介する。磁性材料として永久磁 石,磁気光学素子,磁気記録媒体などを取り上げて,その 磁性の発現機構と電子状態に関する研究に XMCD がどの 様に活用され得るのか,現状と可能性を紹介する。これら の材料に共通する興味は,注目する磁気特性がスピン軌道 相互作用 (SOI)に由来する点である。XMCDによる磁 性研究の特徴に「軌道磁性」の視点を指摘したい。

2. XMCD 実験

磁性体の応用では、母相に固有な磁気特性(磁気モーメ ント、キュリー温度など)と技術的な特性(残留磁化、保 磁力など)が区別される。材料としては後者が重視される が、基本的な理解は前者を通して得られる。したがって、 自発磁化の大きさやキュリー温度、磁気構造と磁気相転移 などのマクロな特性に関する情報が不可欠である。また磁 気的相互作用は短距離で効く相互作用である。磁性原子の 配位構造、元素選択的な電子状態や磁気分極の大きさなど ミクロな情報も重要である。しかしながら、マクロな磁性 とミクロな磁気状態との関係については十分な理解が得ら れているとは云えない。

XMCD(*Δμt*)の積分強度は,現象論的に以下の式で説 明される。

$$\int (\Delta \mu t) d\omega \propto P_c \times \frac{M(T, H, P)}{M(0, 0, 0)} \cos \theta \times \Delta \rho$$
(1)

ここで、 P_c : 円偏光度、M(T, H, P): 温度、磁場、圧力の関数としての磁化、M(0, 0, 0): 飽和自発磁化、 θ : X線波数ベクトルと磁気モーメントのなす角、 $\Delta \rho = \rho(\uparrow) -$

 $\rho(\downarrow)$:状態密度の差(磁気分極), $\rho(\uparrow)$, $\rho(\downarrow)$:up-spin, down-spin バンドの状態密度, $\rho = \rho(\uparrow) + \rho(\downarrow)$:状態密度 の和である。磁場方向($\theta = 0, \pi$)か偏光(ヘリシティ: $P_c = 1, -1$)の一方を反転すると、 $\Delta \mu t$ の符号が変る。X 線移相子を用いるとヘリシティの反転が容易かつ高速に実 行できる²⁾。これによって、外場に対する依存性の測定や 極端条件下の実験が容易になっただけでなく、磁場を独立 したパラメータとして扱う実験が可能になった点が注目さ れる。また円偏光変調法³⁾の確立によって検出感度 (XMCD/XANES~5×10⁻⁵)や統計精度の向上が得られ ている。XMCDによる磁性研究を展開するために、外場 (温度・磁場・圧力など)の極端条件あるいはそれらの複 合条件の整備も進められている。

SPring-8のBL39XUに設置されているXMCD測定装 置の概略をFig.1に示す。移相子によって直線偏光から 変換された円偏光X線が磁化した試料に照射される。標 準的な測定では,X線は電磁石のポールピースの中心に 設けられた貫通孔を通って試料に導かれる。電磁石の磁極 間には低温装置や高圧装置が挿入され,磁場に加えて他の 外場(温度や圧力)も印加される。高磁場が必要な場合に は電磁石を超伝導磁石に代える。測定条件の現状は以下の 通りである。

X線エネルギー: 5.7~13.7 keVの円偏光

- 温度:1.5~300 K(超伝導磁石の利用) 約20~300 K(電磁石+冷凍機) 300~600 K(電磁石+簡易電気炉)
- 磁場:最高10T(超伝導磁石), 最高2T(電磁石,ポールピースに依存)
- 圧力:常圧~約50 GPa (室温),常圧~約10 GPa (低温)
 試料形状と計測法:粉末(透過法),板状および薄膜 (蛍光法)

試料の形状と磁気特性,測定する吸収端のエネルギーと元素の濃度などに適した測定条件を見出す必要がある。測定条件は実験目的に深く関係することは言うまでもない。

上記のエネルギー領域では、3d 遷移金属(TM) K-吸 収端、4f 希土類金属(R) L-吸収端、5d 遷移金属 L-吸収 端などを扱えるので、多くの磁性元素が研究対象となる。 それらの光吸収励起終状態がTM(4p)やR(5d)の非占有

Figure 1. Setup for XMCD experiment on BL39XU at SPring-8.

伝導バンドであることから,XMCD スペクトルは複雑な 形状と微弱な強度を示す場合が多い。しかし検出感度と統 計精度の向上によって,実験と理論の比較による詳細な分 析や定量的な議論が可能になりつつある。XMCD はスピ ン分極と SOI に由来し, *K*-吸収端の場合,最隣接原子の *p* 軌道を介した *p-d* 混成効果の重要性が分かっている⁴。 XMCD が局所的な対称性の変化や外場に対する電子状態 の応答に敏感なこと,磁気光学総和則^{4,5)}を利用すると磁 気モーメントに対する軌道とスピンの寄与が見積もられる ことは,磁性研究にとって大変有利である。

3. XMCD による磁性研究

3.1 磁気状態

XMCD スペクトルから得られる最も重要な情報は,磁 気分極の大きさと符号であり,それらの系統性や外場に対 する依存性であろう。

(a) 元素選択性

室温で強磁性の場合は,試料を磁極間に挿入し,磁場を 印加するだけで測定条件が適う。大気中での測定が可能な ので効率も良い。この標準的な測定条件の実験から得られ る元素選択的かつ系統的なデータが有効な例として希土類 磁石の場合を紹介する。

現在の主要な永久磁石材料の母相は R-TM 化合物(希 土類磁石:Sm-Co系,Nd-Fe-B系)である^{6,7)}。永久磁 石の特性では,残留磁化,保磁力,最大エネルギー積が重 要である。Neomax 磁石は保磁力1.7 T,最大エネルギー 積43 MGOe の世界最高性能を実現している。応用では モーター(電気自動車やロボット),MRI装置用磁石, PC 周辺装置やAV装置のアクチュエータ,スピーカー, 放射光光源などが挙げられる。一方,R-TM 化合物の磁 性では,一軸異方性の発現,磁気秩序の形成,非金属元素 (B,N,H)の役割,スピン再配列現象(non-collinear 磁 気構造)などに興味が持たれている。

Neomax 磁石の母相の R₂Fe₁₄B 型化合物は, Fe が密に 分布する層とRが配位する層とが交互に積層した構造を 取る。磁化を担う Fe イオンと磁気異方性を発揮する R イ オンが空間的に隔たっているにも拘わらず、長距離磁気秩 序(軽希土類化合物は強磁性,重希土類化合物ではフェリ 磁性)を形成する。**Fig.2**に, R₂Fe₁₄B系のFe K-吸収 端 XMCD を示す⁸⁾。吸収端エネルギー E₀ から約6 eV 高 エネルギー側に系統的な変化が見られる。即ち,①R= Y, La, Ce, Yb, Lu では純 Fe の XMCD と類似したスペク トル形状が、

② R=Pr, Nd, Sm では負の方向に増加する、 ③ R=Gd, Tb, Dy, Ho, Er, Tm では逆に正の方向に増加し ている。この様な R イオンに因る Fe サイトでのスペクト ル形状の系統的な変化は, Fe 4p 電子とR 4f 電子の間の 強い相関を示唆している。磁気秩序の形成に果たす TM (3*d*)-R(5*d*)-R(4*f*) 混成効果は、今まで考えられて来た 以上に重要であることが分かる。Champbell モデルで云

Figure 2. Fe K-edge XMCD spectrum in $R_2Fe_{14}B$ system $(R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu)^{8)}$.

う RKKY 相互作用を媒介する TM(4*p*)−R(5*d*) 伝導電子 に関する情報が得られる意義は大きい。この様な研究から、磁気モーメントの増大とキュリー点の高温化、磁気異 方性の増強に関する機構の理解が期待される。

(b) 温度依存性

XMCD の温度変化から磁気相転移や磁化補償現象に関 する情報が得られる。ここでは希土類-鉄-ガーネット (R₃Fe₅O₁₂:略称 RIG)フェリ磁性体における補償現象を 紹介する。RIG の飽和磁場は1kOe 程度なので,電磁石 と冷凍機の組み合わせによって温度依存性を測定できる。 冷凍機を使用する場合,約20~300 K が温度可変である。

RIG は光アイソレータや光サーキュレータなどの磁気 光学素子に不可欠の材料である。直線偏光した光がこの素 子を透過するとファラデー効果が観測される。光の波数ベ クトルが素子の面直磁化に平行か反平行かによって偏光面 の回転方向が異なる性質(非相反性)を利用して、半導体 レーザーを安定化して高速・大容量光通信を実現するのが Bi 置換 RIG 単結晶膜((RBi)–IG)である⁹⁾。R 原子の一 部を Bi で置換すると、SOI が大きな Bi 6p 軌道が隣接す る O^{2-} の 2p 軌道と分子軌道を構成することで O 2p 軌道 の実効的な SOI が増強されるため、ファラデー回転角が 非常に大きくなる¹⁰。

RIG は立方晶ガーネット構造を持つフェリ磁性体 (T_c

Figure 3. Temperature variation of Dy L_3 -edge XMCD in Dy₃Fe₅ O₁₂ at below and above the compensation temperature (226 K). The lower panel shows the XANES spectrum.

~570K)で、ネールのフェリ磁性理論の基礎となった。 Fe^{3+} イオンは四面体位置 (T_d) と八面体位置 (O_h) を占 有し, R³⁺ イオンは十二面体位置を占める。3 個の Fe³⁺ (T_d) と2個の $Fe^{3+}(O_h)$ は、 O^{2-} イオンを介した超交換 相互作用によって反強磁性的に結合する。R³⁺ イオンは Fe³⁺ イオンの分子場中で常磁性的に弱く結合している。 室温付近では Fe 副格子の磁化が主要だが、温度の低下に したがって、R 副格子の磁化が急速に増大して支配的とな る。Fe と R の副格子磁化が拮抗し、ある温度で自発磁化 が消失するのが補償温度である。Fig.3はDy-IGにおけ る Dy L_3 -吸収端 XMCD の補償温度 (T_{comp} = 226 K) 前 後での符号の反転を示している。低温で主要となるスペク トル構造は R(4f)-R(5d) 原子内交換相互作用による R (5d) 電子の分極を表している。磁性イオンの電子状態 は、ガーネット型でもスピネル型フェライトでも [FeO₄] および [FeO₆] 多面体 (RIG では [RO₈] 多面体) が基 本ユニットであり、バンド描像を用いなくても、原子モデ ルから出発して結晶場と SOI を用いて議論される。また 最隣接 O²⁻ イオンの 2p 軌道を介した混成や電荷移動の効 果をも考慮する必要がある。これは共鳴X線散乱の機構 とも深く関係している。

(c) 磁場依存性

XMCD 測定での磁場は量子化軸を決める重要な役割を 担っている。一方,高磁場の印加が不可欠なケースには, 磁気異方性の大きな試料(例えば,希土類化合物)の磁気 的飽和を得る目的とメタ磁性転移の観測の二つが考えられ る。BL39XUには最高10 T までの横磁場を発生できる超 伝導磁石(Fig. 4)が設置されている。この超伝導磁石に はヘリウムガス再凝縮用冷凍機が取付けられているので, 液体ヘリウムの補充無しで約1週間の連続運転が可能で ある。試料を6個まで装着できる試料ホルダーロッドを 利用できるので実験の効率が良い。ただ試料温度の安定化 には時間を要する。

メタ磁性は、反強磁性の基底状態に印加した外部磁場の 強度を増していくと、ある閾値を超えたときに起こる強磁 性への一次転移を指す。遍歴電子系や強相関電子系のメタ 磁性転移に興味が持たれている。ペロフスカイト型 Mn_3 GaC における磁場誘起強磁性相の Mn 4p 電子分極状態を, Mn K-吸収端 XMCD の磁場依存性を通して調べた¹¹⁾。 Mn_3 GaC では、立方晶を保ったまま T=180 K で格子の膨 張を伴って、強磁性から反強磁性の低温相に1次転移す る。**Fig.5**は、ゼロ磁場で反強磁性状態に在った160 K で、メタ磁性転移した Mn の分極状態を示している。磁 場の増加に伴うスペクトル強度の急激な増大やヒステリシ スも観測された。スペクトル形状は強磁性相でのそれと本

Figure 4. Superconducting magnet capable of supplying 10 T in maximum. This magnet is characterized by split-type, horizontal direction of field, and two refrigerators attached for He-gas recondensation.

Figure 5. Magnetic field variation of Mn *K*-edge XMCD in the metamagnetic state at 160 K in Mn_3GaC perovskite¹¹).

質的に異ならない。したがって Mn_3GaC におけるメタ磁性は磁気構造の転移に因り, Mn 4p 電子状態の顕著な変化を伴わないことが分かった。(1)式から XMCD の磁場依存性は一種の磁化率を与えるが, non-collinear な磁気構造の場合,本来の磁化率とは異なる振る舞いが観測されている。磁気異方性と軌道磁気モーメントとの関係が推測される。

(d) 圧力依存性

一方,強磁性体に対する圧力効果は,磁気モーメントの 減少やキュリー温度の低下,構造相転移に伴う磁気転移な ど強磁性の不安定化に現れる。圧力効果は磁気体積効果 (磁歪,通常は体積膨張)に対する逆効果とも云える。分 極状態の圧力依存性は磁性の基本的な問題の一つである が,放射光による実験は緒に就いたばかりの分野である。

ダイヤモンド・アンビル・セル (DAC) を用いた高圧 下の XMCD 測定は, $Fe_{72}Pt_{28}$ 不規則合金における Fe の high-spin と low-spin 転移を Pt L_3 -吸収端 XMCD を用い て観測した Baudelet 等の20 GPa までの実験が最初であ る^{12,13)}。高圧下 XMCD 実験では, アンビルの X 線吸収に よる X 線強度の低下, ビームの安定性と装置の振動, 微 小試料の最適化が問題である。したがって高エネルギーの Pt L-吸収端の利用は理に適っているが, Fe の状態を直接 観察する必要がある。我々は, 比較的厚さが薄く (1 mm^t) キュレット径の大きい (350 μ m) ダイヤモンド・アンビ ルを利用することで, 50 GPa までの高圧下で Fe K-吸収 端 XMCD の精密測定に成功している¹⁴。Fig. 6 は, Fe₄ N の Fe K-吸収端 XMCD の圧力変化を示している¹⁵)。 Fe₄N は格子の収縮とともに XMCD の強度も減少し, 24

Figure 6. Pressure variation of Fe *K*-edge XMCD in Fe₄N. When the pressure is released from 27 GPa, the XMCD spectrum recovers intensity without any hysteresis¹⁵⁾.

Figure 7. Cross section of diamond-anvil-cell installed in a cryostat. Diffraction from NaCl loaded together with sample is applicable to monitor of the generated pressure.

GPa 付近でその強度が消失する。更に,この圧力誘起の 磁気転移は可逆的であることも分かった。24 GPa 以上で は,格子の収縮によって 3d 電子軌道の混成が増し,強磁 性から常磁性への転移が起こると推測される。この実験の 様に,格子定数の圧力依存性と構造相転移の有無を高圧下 粉末 X 線回折で確認することで,「構造と磁性」の相関に ついてより深い理解が得られることを指摘しておきたい。

室温での測定であれば,DACを電磁石の磁極間に挿入 するだけで測定条件は満たされる。更に,低温・高圧下で のXMCD実験を可能にするために,DACを冷凍機に組 込んだ低温高圧装置を作成し,性能評価と改良を行ってい る。Fig.7にX線ビーム位置での装置の断面図を示す。

4K-GM 冷凍機を採用したことで,DAC を収納した状態 で4K まで冷却できる。圧力は金属メンブレムによって外 部から制御される。セル内の発生圧力は,試料と共に加圧 された NaCl の格子定数を円偏光 X 線による90度散乱を 用いて測定し,Decker の状態方程式を用いて見積もられ る。

3.2 磁化過程

移相子を利用すると印加磁場を独立したパラメータとし て扱える。(1)式によると、XAFS本来の元素選択性と磁 気プローブとしての XMCD の特徴を組み合わせた元素選 択的磁気測定が可能となる。Fig. 8 は Koizumi 等¹⁶⁾によ って行われた Gd/Fe 合金多層膜に関する元素別磁化過程 の測定結果である。Gd/Fe 多層膜磁性体のGd L3-吸収端 と Fe K-吸収端を用いた元素別ヒステリシス曲線を表し ている。この測定では、入射 X 線のエネルギーを特徴的 なスペクトル構造を与えるエネルギーに固定して、磁場を 掃引しながら XMCD の強度測定ができる円偏光変調法の 特長が活かされている。元素別ヒステリシス曲線が磁化の 振る舞いと異なることから、磁場強度に依存した多層膜で の多様な磁気構造の詳細が議論されている。この元素選択 的なヒステリシス測定は多元系の磁化過程や薄膜の磁気特 性の研究に適している。中性子磁気散乱やメスバウアー分 光,NMR 等のミクロな磁気測定法と較べて,XMCDの 元素選択性は他に無い特長である。また一定の印加磁場の

Figure 8. Element-selective hysteresis loop for XMCD intensity at (a) Gd L_3 -edge and (b) Fe K-edge in Gd/Fe multi-layered film. Solid line in the upper panel displays magnetization hysteresis loop¹⁶.

下での XMCD の温度変化は,磁場中冷却過程の元素別測 定に対応する。更に温度磁場一定の下で XMCD 強度の時 系列データの収録も可能である。磁性の揺らぎに関する研 究への応用が考えられる。

一方,磁化の緩和過程を研究する目的で,Fontaine 等 による時間分解 XMCD 実験が ESRF で成功している¹⁷⁾。 一巻きのマイクロ・コイルによってパルス磁場を発生さ せ、エネルギー分散型 XAFS 分光装置に移相子による円 偏光の生成と CCD-PSD (position sensitive detector) によ るデータ収録を組み合わせた測定系を用いて,XMCD 強 度のナノ秒スケールでの時間変化が測定されている。Fig. 9に、GdCo3アモルファス薄膜に対するパルス幅22 ns で 0.7 T のパルス磁場に因る Gd L₃-吸収端 XMCD の励起と 緩和の過程が時分割で示されている。容易面型の Gd 磁気 モーメントは面直に掛かった磁場に追随して立ち上がり再 び面内に戻るが、それは1nsよりも速い応答であると結 論付けている。同様に Co の磁気モーメントの振る舞いも 調べられ、Co K-吸収端では困難であったが、軟 X 線領 域のL-吸収端で成功している。スピン・バルブCo/Cu/ Ni₈₀Fe₂₀やトンネル接合 Co/Al₂O₃/Ni₈₀Fe₂₀におけるスピ ン・ダイナミクスの観測に応用されている¹⁸⁾。

Figure 9. Time-resolved XMCD spectrum recorded at Gd L_3 -edge in GdCo₃ amorphous thin-film¹⁷⁾.

3.3 磁気異方性

磁性材料の応用では磁気異方性が積極的に活用される。 結晶磁気異方性は SOI に起因するので、XMCD を用いた 研究が適している。最近,垂直磁化膜に関する XMCD 研 究が基礎および応用の両面から注目されている。ここで は、次世代のハードディスク材料や MO として有望視さ れている CoCrPt 合金¹⁹⁾や CoPt 規則合金の垂直磁化膜に おける Pt $L_{2.3}$ -吸収端 XMCD の例を紹介する。

高度情報化社会に向けて,磁気記録媒体の高密度化と R /W 用磁気ヘッドの高分解能化が重要な課題と云われてい る⁷⁾。従来の面内磁気記録では,超常磁性のために200~ 300 Gbit/in² の記録密度が限界と考えられ,それ以上の密 度の実現には垂直磁気記録が不可欠とみられている。垂直 磁化膜の次世代ハードディスクでは1 Tbit/in² の記録密度 が目標とされている。一方,垂直磁化の発現機構では結晶 磁気異方性,薄膜の金相学的構造と結晶配向性,形状異方 性などが重要とされていが⁷⁾,未だ不明の点が多い。XRD と EXAFS 解析から,垂直磁気異方性は柱状の強磁性粒 子とそれらを孤立させる偏析非磁性相からなる不均質な構 造が重要と指摘されている²⁰⁾。

Fig. 10は, SPring-8 BL39XU で行われた垂直磁化膜に 関する蛍光法 XMCD 測定の配置図である。試料面に垂直 に磁場を印加した状態で, 120 eV 程度のエネルギー分解 能をもつ SDD (silicon-drift detector)の検出角 φ と距離rを調整できる。 $\varphi \sim 87^\circ$ の配置で膜厚が数10 nm ~ 0.1 nm の薄膜でも良好な S/N 比のデータが収録できる。また試 料を回転させて膜面に対する入射角 ψ を変えると, XMCD の角度依存性の測定が可能である。 φ, ψ, r の値を 用いて蛍光法による吸収スペクトルの補正ができる(薄膜 の場合にはその必要が無い)。**Fig. 11**は, CoPt 規則合金 垂直磁化膜の Pt $L_{2,3}$ -吸収端 XMCD とバルク試料のそれ との比較を示している。薄膜の測定では面直に磁場を印加

Figure 10. Experimental geometry of XMCD in fluorescence mode for perpendicular magnetization thin-films.

Figure 11. XMCD spectra at Pt $L_{3^{-}}$ and $L_{2^{-}}$ edges in CoPt ordered alloy thin-films. Comparison between bulk sample and the thin-films, sputtered on the MgO (111) or (100) substrate, is displayed²¹⁾.

して、 ψ =45°、 φ ~100°の配置(**Fig. 10**と異なる)で蛍 光法によって、バルク試料は透過法で行われた²¹)。*L*-吸 収端の磁気光学総和則を用いて、角運動量の基底状態期待 値の軌道成分〈 L_2 〉とスピン成分〈 S_2 〉を求め、それらの 割合〈 L_2 〉/〈 S_2 〉比を評価できる。その結果、薄膜の〈 L_2 〉 /〈 S_2 〉比がバルクより大きいこと、L1₁-型規則構造(六方 晶)の方がL1₀-型(正方晶)よりも大きいことが分かっ た。垂直磁気異方性と薄膜の結晶学的構造との関係が推測 される。総和則を薄膜に適応する場合、磁気双極子項 〈 T_2 〉の取り扱いが問題となる。Co/Pt 二層膜の界面での Pt の分極状態が、共鳴磁気 X 線反射率の実験によって議 論されている²²)。XMCD による TM 薄膜や多層膜におけ る磁気異方性に関する研究では、Stöhr によって書かれた 解説が参考になる²³)。

3.4 磁気構造

磁気的相互作用は隣接したスピン間,スピン-軌道間な ど短距離に働く作用である。したがって原子間距離や配位 構造などの局所環境が磁性に強く影響する。本来 XMCD には波数依存性が無いので,長距離磁気構造の議論はでき ないが,磁性原子の周りの局所的な磁気構造の解析が可能 である。それは、EXAFS 領域で観測される XMCD の振動(磁気 EXAFS と呼ばれる)を用いた解析である。磁気 EXAFS の振幅は微弱(<10⁻⁴)なため、測定では S/ N比の向上と長時間の積算が不可欠である。磁気 EXAFS の最初の実験は Schütz 等²⁴⁾による純 Fe と Gd-IG の Fe K-吸収端の比較であった。希土類化合物では、ラーベス 相 DyFe₂ フェリ磁性体の磁気 EXAFS が Nakamura 等に よって測定されている²⁵⁾。Fe K-吸収端 EXAFS とその磁 気 EXAFS のフーリエ変換に相異が認められる。特に、 ±へリシティでの各 EXAFS の二つのフーリエ変換の間 の差分プロファイルをみると、最隣接原子の Fe と第二隣 接原子の Dy では符号が異なり、強度にも相異が認められ る。これはフェリ磁性の反強磁性的な結合と磁気モーメン トの大きさの違いを反映していると解釈されている。多重

散乱理論に基づく計算が J. Rehr, C. Brouder, T. Fujikawa らの各々のグループによって進められている。

4. おわりに

本稿で紹介した磁性材料では、磁気異方性と磁気光学効 果に注目した。その両者とも SOI に由来している点で、 XMCD による研究が適している。更に、SOI ではスピン と軌道成分が格子(構造)と強く結合する。したがって 「構造と磁性」の相関に対する視点が必要であり、高磁場 ・高圧・高温低温の実験でも系統的な測定が不可欠であ る。またスペクトル形状と電子状態やバンド構造との間の 帰属の理解は基本的な課題である。その様な研究による磁 気状態の理解を経て、新物質の創製と設計に資する知見が 得られる。究極の目標は、研究成果の材料科学へのフィー ドバックにあると思う。スピントロニクスやオービトロニ クスの創成と展開につながると素晴らしい。

謝辞

本研究は多くの方々の協力と援助を得て行われました。 JASRI の鈴木基寛氏,河村直己氏,大石泰生氏,理研/ SPring-8 の石川哲也氏,原研/SPring-8 の下村理氏, KEK-PF の河田洋氏,岩住俊明氏,岡山大学の山嵜比登 志氏,名大院工の岩田聡氏,Zaragoza 大学のJ. Chaboy 氏, CNRS-Grenoble のD. Fruchart 氏に感謝致します。

参考文献

- 1) 金森順次郎:「磁性」(培風館, 1969年).
- 2) K. Hirano et al.: Jpn. J. Appl. Phys. 31, L1209 (1992).
- 3) M. Suzuki et al.: Jpn. J. Appl. Phys. 37, L1488 (1998).
- J. Igarashi and K. Hirai: Phys. Rev. B50, 17820 (1994); Phys. Rev. B53, 6442 (1996).
- B. T. Thole, P. Carra, F. Sette and G.van der Lann: *Phys. Rev. Lett.* **61**, 1943 (1992); P. Carra, B. T. Thole, M. Alterelli and X. Wang: *Phys. Rev. Lett.* **70**, 694 (1993).
- 6) J. M. D. Coey: "Rare-Earth Ion Permanent Magnets" (Oxford

Science Pub. 1996).

- 7) 岩間,田崎,大内,内山:「近代磁性材料」(日本材料科学 会,1998年).
- 8) J. Chaboy et al.: Phys. Rev. B54, R15637 (1996).
- 9) 磁性ガーネット単結晶」技術資料(三菱瓦斯化学株式会社).
- 10) 佐藤勝昭:「光と磁気」(朝倉書店, 1988年).
- 11) S. Uemoto et al.: J. Synchrotron Radiation 8, 449 (2001).
- 12) F. Baudelet et al.: J. Synchrotron Radiation 5, 992 (1998).
- 13) S. Odin et al.: J. Appl. Phys. 83 (1998) 7291.
- 14) N. Ishimatsu et al.: Nuclear Inst. and Methods in Physics Research A467-8, 1061 (2001).
- 15) N. Ishimatsu et al.: J. Phys. Soc. Jpn. 72 (2003) in press.
- 16) A. Koizumi et al.: Phys. Rev. B61, R14909 (2000).
- 17) M. Bonfim et al.: J. Synchrotron Radiation 5, 750 (1998).
- S. Pizzini et al.: "Spin Dynamics in Confined Magnetic Structures II" (eds. Hillebrands & Ounadjela, Springer, 2003) pp155.
- 19) 鈴木孝雄:固体物理 37(4),59 (2002).
- 20) C. J. Sun et al.: J. Appl. Phys. 91, 7182 (2002).
- 21) 岡本早智,圓山裕他:第15回日本放射光学会年会要旨集(2002年) p113.
- 22) J. Geissler et al.: Phys. Rev. B65, 020405 (2001).
- 23) J. Stöhr: J. Magn. Magn. Mater. 200, 470 (1999).
- 24) G. Schütz et al.: Phys. Rev. Lett. 62, 2620 (1989).

圓山 裕

25) T. Nakamura et al.: J. Phys. Soc. Jpn. 67, 3964 (1998).

広島大学大学院理学研究科 E-mail: maruyama@sci.hiroshima-u.ac.jp 専門:X線磁気分光 略歴: 1952年 兵庫県生まれ 1980年 岡山大学大学院理学研究科

修士課程修了

1981年~83年 フランス CNRS 高磁場研究所客員研究員
1985年 岡山大学理学部助手
1986年 理学博士(広島大学)
1993年 岡山大学理学部助教授
2001年 広島大学大学院理学研究科教授

石松直樹

広島大学大学院理学研究科 E-mail: naoki@sci.hiroshima-u.ac.jp 専門:X線磁気分光,高圧物性 略歴: 1971年 静岡県生まれ 1999年 東京工業大学総合理工学研

究科博士課程修了

1999年 日本原子力研究所関西研博士研究員 2001年 広島大学大学院理学研究科 助手