特別企画 🛛 放射光源シリーズ(7)

ビーム安定化に向けて(1)

田中 均 財団法人高輝度光科学研究センター 〒679-5198 兵庫県佐用郡三日月町光都 1-1-1 E-mail: tanaka@spring8.or.jp

1. はじめに

放射光を利用する実験ユーザーであれば,自分の使って いる光源の光が「もっと安定であれば良いのに」と感じた ことが一度はあるだろう。特に,最近の高輝度光源では, 利用できる光がシャープなので,光のもとになるビームの 安定度は,この高輝度光のメリットを最大限に引き出す上 で極めて重要になる。

実験ユーザーに不利益をもたらすビームの不安定性は, (a)加速または蓄積される電子・陽電子(以下電子)の軌道 や収束ポテンシャルを構成する電場や磁場の変動によって 引き起こされるものと(b)電子が真空チェンバーや空洞に作 る航跡場や,電子とチェンバー内のイオンや光電子,また は加速されている別の電子との散乱によって引き起こされ るものの2つに大別される。前者(a)は,加速または蓄積 される一電子の安定性の問題であり,電流に依らず変動が 引き起こされる。一方後者(b)は,バンチ電流や蓄積電流が 増加するに従い劇的に効果が大きくなるので,加速または 蓄積できる電流値の上限を与える。ここでは,ビーム安定 化を(a)一電子の安定性の観点から,正確にではなく,分か りやすく説明してみたい。

2. 加速器内の電子を安定に蓄積・加速する電磁場

加速器中を周回する電子は偏向電磁石(一定のダイポー ル磁場を与える2極電磁石。通常軌道面が水平なので軌 道の上下にN極とS極があり,一様な垂直磁場を与える) により軌道が構成される。軌道(Orbit)とは電子の運動 が加速器一周で周期条件を満たす粒子の軌跡(Trajectory) のことである。

軌道に沿って、軌道からの変位に線形な収束力を与える 4極電磁石を配置すると、リング一周の積分として、軌道 を極小とする双曲ポテンシャルが構成され、電子の水平・ 垂直微小振動(ベータトロン振動)が軌道の周りで安定化 する。

一方,放射光リングでは電子が磁場で曲げられることで 放射される光が実験に利用される。周回している電子は, 放射によりエネルギーを失うので,周回ビームに同期した RF 加速電場でエネルギーが補償され,一定の蓄積エネル ギーが維持される。この加速電場にも,蓄積エネルギーに 対応する加速位相の周りで,エネルギー偏差を帰還する線 形の電場勾配がついている。これにより,4極電磁石と同 様に,エネルギー振動を安定化する双曲ポテンシャルが加 速位相を中心に構成される。

これらの安定化ポテンシャルの働きで,放射光リングを 周回する電子は軌道上の加速位相のまわりに集群し,固ま り(バンチもしくはビーム)を形成する。電子の固まり (以下電子ビーム)は放射プロセスの統計的揺らぎ(振動 励起)で絶えず攪乱され,放射による振動減衰と加速器パ ラメータや誤差磁場などの要素で決まる有限の広がり(中 心付近はほぼガウス分布)を,時間,水平,垂直の3方 向で持つ。軌道は,ビームの進行方向に直交する横方向空 間分布の中心に常に位置し,加速位相は放射光パルスの繰 り返しを規定する。

3. 摂動が引き起こす光軸/光強度/波長変動

2節で述べたようにダイポール磁場分布*1が電子ビーム の加速器内での軌道を決定する。従って,放射光リング軌 道上でのダイポール磁場分布が時間的に変動すれば,加速 器を周回する電子ビームの水平(垂直)方向の重心が全周 に渡り変位する(軌道が歪む)ことになる。軌道変動は光 源点での光の位置と角度が時間的に変わることを意味し, 実験ハッチ内での光の重心位置を変化させるだけでなく, 分光後の光の強度や波長をも変動させる。軌道変動の時間 スケールが測定の積分時間に近い場合には,測定データに 明確な軌道変動の影響が現れる。

軌道が変動しない場合でも、軌道と加速位相の周りの電 子ビーム広がりが変動すれば、位相空間内での電子ビーム の密度が変調し、放射される光の輝度が低下したり、光の パルス幅が変動する。水平と垂直2方向の電子ビーム広 がりの変動は、特定の周波数成分を有する誤差磁場による 軌道周りの微小振動の励起(共鳴)によって主に引き起こ される。共鳴には水平振動を増大させる1次元の共鳴の 他、水平と垂直の振動エネルギーの交換が生じる2次元 の結合共鳴等がある。

電子ビームの時間方向の広がりは, RF 加速電場の電圧 や位相の早い変動によって主に増大する。時間方向の広が りの拡大は,電子ビームのエネルギー広がりの拡大を伴な

^{*1} 正確には平均的なエネルギーロス分布(放射や航跡場)とエ ネルギー利得(加速空洞でのエネルギーゲイン)にも依存す る。

うので,光のパルス幅が変動するだけでなく,アンジュ レータ放射の共鳴エネルギースペクトル幅も増大し,ピー ク強度を低下させる。これらの変動は結果として分光後の 光強度を低下させる。

測定の積分時間に比べ軌道変動が十分早い場合には,水 平,垂直の電子ビーム広がりが増大した場合と同様に,試 料上での時間平均輝度の低下を引き起こす。

ここでは,これ以降,軌道変動をどのように安定化して いくかに限定して話を進める。

4. ビーム軌道変動要因

 電磁石やビーム位置モニタ (BPM)*2の位置を変動 させる要因

軌道からの変位に比例した磁場を発生する4極電磁石 の磁場中心が,軌道から微小変位dxだけずれると,dxに 応じたダイポール磁場が軌道上に発生する。一方,dxに 依らず一様磁場を発生する偏向電磁石は微小変位で新たな ダイポール磁場が軌道上に発生することはない。6極電磁 石のような非線形電磁石は,微小変位dxの2次以上に比 例して磁場を発生する。このダイポール磁場は極めて小さ く,これによる軌道の歪みは通常無視できる。電磁石振動 のうち,4極電磁石の振動が主に軌道変動を引き起こすこ とが理解できたであろう。

軌道を構成する偏向電磁石の配置が、建物の歪み等で軌 道方向にズレると、ダイポール磁場が変化し、軌道の歪み が生じる。月と地球の位置の変化による重力変動(潮汐) や、地震や波浪のような強大なエネルギーによる岩盤の収 縮・拡大を通し、リングの周長が変化すると、周回ビーム のエネルギーが変化し、結果として水平軌道の歪みが発生 する。このようなメカニズムで軌道変動を起こす要因を以 下にまとめる。

- (a) 施設の回転機, 圧縮機, 配管などの振動:数 Hz~
 数百 Hz の4 極電磁石の振動
- (b) 電磁石冷却水の脈動:数Hz~数百Hzの4電磁石の振動
- (c) マシントンネル内への挿入光源(ID)等重量物の 設置:数日~数週間の重量物設置床面の変形
- (d) マシントンネル内の温度分布の変動:数日に渡る磁 石架台の熱変形
- (e) 電磁石と真空チェンバーの干渉:真空チェンバーの 熱変形によるゆっくりした4極磁石位置の変位
- (f) BPMのノイズや再現性:軌道補正プロセスを通し てのビーム軌道測定誤差による軌道変動(変動周期は 軌道補正プロセスの補正周期に依存)
- (g) 外気温変動:1日及び年周期の建家及び基礎の収縮 と拡大

- (h) 日照の変化¹⁾:1日及び年周期の建家の変形
- (i) 地球潮汐²⁾:約12時間周期の岩盤の拡大・収縮
- (j) 車,電車*3等の振動:数Hz~数百Hzの4極電磁
 石の振動
- (k) 地震:数秒~数十秒周期の4極電磁石の振動と岩 盤の拡大・収縮
- (1) 海の波浪:1Hz以下の4極電磁石の振動と岩盤の 拡大・収縮
- m)加速器建設地域での降雨:大地圧の変化による数時間から数日の床面の変動
- (n) 蓄積電流の変化:入射間隔(数時間~1日)で繰り
 返す BPM 位置の変化
- 電磁石磁場や環境磁場を変化させる要因

軌道を構成する偏向電磁石や軌道歪みを直す補正磁石の 磁場の時間的変化は,加速器内のダイポール磁場分布を直 接変動させる。このようなメカニズムで軌道変動を起こす 要因を以下にまとめる。

- (a) 電磁石電源のリップルやパワーライン変動:数Hz ~数百Hzの4極電磁石,偏向電磁石励磁電流変動
- (b) 偏向電磁石冷却水の温度変動:数分~数十分周期の 偏向電磁石ヨーク形状の変形
- (c) ID 設置による電磁石端部境界条件の変化: ID 両端 ステアリング電磁石の積分磁場の変化(ID 設置時に ステップ的に作用)
- (d) 実験ホールやマシントンネル内のクレーン位置: ク レーンの動きに応じた軌道上の地磁気分布の変化
- (e) 隣接する加速器等の運転:運転サイクルに応じた軌道上の環境磁場の変動
- ③ 新たな磁場を軌道上に発生させる要因

軌道上に新たな変動磁場を発生し,加速器内のダイポー ル磁場分布を変化させることで軌道変動を引き起こす要因 を以下にまとめる。

- (a) 4 極電磁石内部の真空チェンバー振動:4 極磁場と チェンバー振動が誘起する渦電流による数 Hz~数百 Hz のダイポール磁場の発生
- (b) 実験ユーザーの持ち込む超電導磁石等:実験ホール に設置した電磁石の励磁により軌道上に磁場が発生 (励磁パターンに依存)
- (c) ID の誤差磁場: ID ギャップ変更による誤差磁場の 変化
- (d) ビーム入射:入射パルス電磁石の励磁による誤差磁 場の発生
- ④ リングの放射損失分布を変化させる要因

^{*2} BPM の測定値を軌道の補正に使用しているので,測定値に誤 差が入ると,補正を通して逆に軌道が歪められる事になる。

ID ギャップの変更は、軌道上での ID のピーク磁場を

^{*3 2000} 年 の EPAC で CERN の S. Myers は "Twelve Years of Beam in LEP: the Good, the Bad, and the Unforeseen" とい招 待講演の中でフランスの高速列車 TGV がジュネーブに近づい てくるのがビームの挙動で分かったという話をしていたのが 印象的である。

Figure 1. Horizontal orbit variation by an earthquake observed at the SPring-8 storage ring. The earthquake of which magnitude is M6.7 was occurred in the offing of Taiwan winter 2003. The above variation was observed by the BPM at the center of the unit cell at the time when the earthquake just occurred.

変化させるので,各 ID での放射パワーが変化する。これ により,リングに沿った電子ビームの蓄積エネルギー*4が 変化し,主に水平方向に軌道を歪める。

Fig. 1 に地震で生じた SPring-8 蓄積リングの水平軌道 変動の例を示す。SPring-8 の軌道周期補正システムでは, Fig. 1 の変動を補正できない。このため,地震発生時に はユーザーに「どの程度の振動がどの時間帯に発生してい たか」という情報を流している。

周長の変化は、ビームのエネルギーを変化させ、エネル ギー分散部⁴⁵で水平軌道を歪める。SPring-8 ではエネル ギー分散部の BPM で水平軌道変位を観測することで、蓄 積リングの周長の変化を常時モニターしている。測定した 周長の変化をもとに、ビームエネルギーを一定に保つよう に RF 周波数に0.1 Hz の精度で帰還をかけている。Fig. 2 に温度の年変動が原因と考えられる SPring-8 蓄積リング の RF 周波数(周長)の変化を、Fig. 3 に地球潮汐で引 き起こされた RF 周波数(周長)の変化を示す。

Fig. 4 には電源改造前後での水平軌道変動スペクトル を示す。4 極電磁石電源の改造によって電流リップルが減 少し,1Hz 前後の軌道変動成分が大幅に低減しているこ とが分かるだろう。

5. ビーム軌道変動の抑制

軌道変動を抑えるには,変動要因の抑制と軌道変動補正

Figure 2. Change of the RF frequency from the year 2000 to 2003 observed at the SPring-8 storage ring. The clear change with a one-year cycle is seen in the figure. Since the frequency change of 100 Hz corresponds to the circumference change of $300 \,\mu\text{m}$, the circumference of the storage ring varies by about 1 mm for one year.

Figure 3. Change of the RF frequency for two weeks observed at the SPring-8 storage ring. This variation has a twelve-hour cycle roughly and we predict that earth tide causes this kind of variation. The variation by earth tide is about 10 Hz giving the circumference change of $30 \,\mu\text{m}$.

が車の両輪になっている。究極の軌道安定性は,補正のみ からも,変動要因抑制のみからも得られないのは言うまで もないが,変動要因を抑えておくことで,補正に対する要 求を大幅に緩和できる。

4節で述べた軌道変動要因を考慮し,電磁石やその架 台,電磁石電源,パワーケーブルの引き回しとその断熱, チェンバーの材質や固定方法,冷却水配管のレイアウト, BPM の配置と固定法など加速器構成要素を,軌道変動抑 制の観点から計画・設計する事が肝要である。日照や気温 の変化を受けにくい入母屋式構造の採用,トンネル内及び 実験ホールの温度分布を安定させる空調システムなど建家

^{*4} 当たり前のことだが、リングを周回するビームのエネルギー はリングに沿って一定ではない。高周波加速空洞の配置や放 射損失の場所と損失量に依り、リングの各位置でのビームの エネルギーが決まる。厳密には、高周波加速空洞直後がビー ムのエネルギーが一番高い。

^{*5} 設計エネルギーからの偏差に比例し、軌道がずれる場所。

Figure 4. Power spectrum-difference in the horizontal orbit variations observed at the SPring-8 storage ring. The solid and broken lines show respectively the spectra before and after improvement of the power-supplies for the quadrupole magnets. The significant reduction by the improvement is seen around the frequency of 1 Hz.

の設計にも配慮が必要だ。そればかりか, Global Linear Collider (GLC)建設候補地選定³⁾でも分かるように,極限 の軌道安定性を追求するには,建設サイトの選定が極めて 重要になる。強固かつ安定した岩盤地層と軟弱な堆積層で は,自然振動の大きさが全く異なるからである。ESRF⁴⁾ のように Drac と Isere 2 つの川の三角州で,かつ近くに 幹線道路が走っている場所に施設を建設すると,河川の増 水や幹線道路のマンホール上を通過する大型トラックの影 響までもが軌道変動に現れる事になる。

今後, 軌道安定化を行っていく上で特に重要になる4 つの事柄を SPring-8 の事例をまじえ以下にまとめる。ま た, 軌道安定化の現状については, SPring-8 で開催され た軌道安定化国際ワークショップ2002の URL http:// www.spring8.or.jp/e/conference/iwbs2002/index.html で 各施設の取り組みや達成された安定度等を知ることができ る。

5.1 挿入光源(ID)の透明化

最近では、ユーザー運転時にビームライン毎に自由に ID ギャップや位相を動かし、エネルギースキャンや偏光 高速切り換えを行いながら実験できる「独立チューニン グ」という運用方式が主流になってきている。ID の磁場 調整技術も格段に進歩⁵⁾しているが、軌道安定度の向上も 著しい。挿入光源主体の高輝度光源であれば、挿入光源の 誤差磁場は、現状、最も大きい軌道変動要因の1つであ ろう。色々な放射光施設で改善に向けた取り組みが進行 中^{6,7)}であるが、ID の誤差磁場による軌道変動を抽出する 精度を如何に上げるかが最大の課題になっている。

5.2 電磁石とチェンバーの振動対策

比較的周波数の高い振動を誘起する電磁石とその架台, 真空チェンバーの振動対策は,軌道フィードバック補正の

Figure 5. Power spectrum-difference in the vertical orbit variations observed at the SPring-8 storage ring. The solid and broken lines show respectively the spectra before and after suppression of the vacuum chamber vibration in the quadrupole magnets. The significant reduction by the suppression is seen in the frequency range from 30 to 60 Hz.

帯域を考えると重要である。最近, SPring-8 では数十~ 数百 Hz の周波数帯域の軌道変動のかなりの部分が,4 極 電磁石内のアルミ製真空チェンバーの振動から生じている ことが分かり⁸⁾,その対策を実施することで,Fig.5 で示 すようにかなりの抑制効果が得られた。4 極磁場は水平・ 垂直偏差に対し磁場が線形に変化するので,チェンバーの 振動に対し水平・垂直ダイポール磁場を打ち消すように渦 電流が流れ,これがビーム軌道を振動させる。アルミは, ステンレスに比べ,電気抵抗が小さく誘導電流が流れやす いので,アルミ製真空チェンバーにおいてこの効果が顕著 である。

ステンレスチェンバーを用いている ESRF からは,真 空チェンバーの振動が誘起するビーム振動の問題は報告さ れていない。この周波数帯の主なソースは,電磁石架台と 4 極電磁石の振動のようで,架台や電磁石に振動減衰器を 設置⁹⁾し,軌道変動の抑制を行っている。SPring-8の電磁 石架台と4 極電磁石の振動は,現状,かなり小さく抑え られており,ESRF のような架台や電磁石の防振対策は今 のところ不要である。

5.3 光軸モニタリングシステム

放射光リングの場合,蓄積ビームの安定化は,放射され る光を安定化させるためである。光軸(光ビームの重心) の高速・高精度でのモニタリングは,光軸の安定性を保障 する上で極めて重要になる。もちろん,この情報は上流の ビーム軌道制御にも役立てることができる。光軸を測定す る光位置モニター(XBPM)設置位置は,光学系の変動 と軌道変動を分離する意味からも分光器やスリット等,光 を整形する光学機器の上流に置くことが望ましい。また, XBPM の軌道変動に対する感度は,発光点での電子ビー ムの角度発散によるので(ベータトロン関数を小さくする と XBPM の感度は上がる), ラティス設計の際には十分 検討する必要がある。XBPM の現状での問題点は, ID 光 軸観測における ID ギャップ依存性¹⁰⁾にあり, これは上流 の偏向電磁石等からのノイズ光が ID 光と重なり合うため に引き起こされる。X線領域では, 従来の光電子放出型 と異なり, 高エネルギー光により感度の高い光伝導型モニ ターの開発¹¹⁾が進められている。ID のパラメータを固定 すれば, 高い再現性が得られるので, SPring-8 では2003 年秋から, サイクル間の軌道設定に XBPM の利用が開始 された。

5.4 高速高精度軌道補正システム

徹底的な変動要因除去を行ったとしても、軌道変動をゼ ロに抑えることはできない。最後に残った小さな変動を実 験者に気づかれることなく綺麗に補正できれば究極のビー ム安定性に近づくことができる。このためには、高速・高 精度のビーム軌道補正システムを構築する必要がある。高 速と高精度は原理的に両立が難しく、現在もっとも進化し た第3世代放射光リング Swiss Light Source (SLS) でも グローバルの軌道補正を~1 Hz でしている¹²⁾にとどまっ ている。SLS は高速の軌道補正を念頭に、BPM とステア リングの配置を最適化し、局所補正の重ね合わせでリング 全周の補正が完結するように工夫されている¹³⁾。これに よりリング一周の軌道情報を一箇所に集める必要がなく, 高速・高精度補正が実現できると期待されている。この方 法であれば、大きいリングでもデータ転送の問題が生じな い。一方, SPring-8 では, 徹底した変動要因除去を実施 し、高い周波数域までリング全周の軌道変動モードを単純 化し、シンプルなシステムで効率的な補正を行うことを目 指して努力を続けている。このようなアプローチでどの程 度の軌道安定性が確保されるのかは、今後明らかにされて いくであろう。

6. 別の意味での安定化: Top-up 運転

これまでは放射光リングに蓄積されている電子ビームの 軌道変動について議論してきた。しかし,光の安定性を考 える時,分光器やミラー等光学機器の安定度も無視できな い。第3世代の高輝度光源では,光のパワーが狭い領域 に集中し,光学機器の熱負荷が極めて厳しい状況にある。 蓄積電流の減衰やビーム入射時のビームシャッター開閉に よる熱負荷の変動は,無視できない光学系の変動を引き起 こす。注意深く設計された SPring-8のX線光学系です ら,ビーム入射後1時間程度は光学系が安定しないビー ムラインもあるらしい。このような状況を打破するには, 光学系を熱的平衡状態(一定の熱負荷)で使用し続けるこ と,即ち,一定の蓄積電流を実現するのが早道だ。ビーム シャッターを閉めずにビーム入射をするだけでも,ビーム シャッターを閉じた従来の入射に比べ,光学系の熱的安定 性の向上が期待できる。このような背景から,ユーザー実 験と平行し,短い時間間隔で随時ビーム入射を行い一定の 蓄積電流を維持する Top-up 運転が注目を集めている。こ の運転は、タウシェック効果(同一バンチ内での電子・電 子散乱によるビーム損失)が著しい低エネルギー放射光リ ングで,高輝度を目指す場合には不可欠になる。8 GeV と比較的高エネルギーの SPring-8 ですら,蓄積ビームの 高密度化によるビーム寿命低下は避けられず,2004年中 の Top-up 運転導入を目指し,開発・調整が進められてい る。Top-up 運転の難しさは、ビーム入射プロセスの透明 化(実験しているユーザーに見えない)と,入射ビーム損 失を極限まで抑えることの2 点であり,簡単な解説は参 考文献¹⁴)にまとめられている。

7. 謝辞

高輝度光科学研究センターの木村洋昭氏には,実験ユー ザーの立場から,加速器屋の書いた説明の分かりにくい箇 所の指摘,構成や内容に対する助言をいただきました。ま た早乙女光一氏からは,加速器屋として内容に関するコメ ントを頂きました。ここに深く感謝の意を表します。

参考文献

- 1) K. Fuke: Jpn. J. Appl. Phys. 26, 285 (1986).
- S. Daté and N. Kumagai: Nucl. Instr. and Meth. in Phys. Res. A 421, 417 (1999).
- 3) GLC Project, KEK Report 2003–7.
- 4) Conceptual Design Report, The Red Book Draft B, ESRF (1987).
- 5) 挿入光源ハンドブック '96, JASRI (1996).
- M. Lonza et al.: Proc. of the 8th European Particle Accelerator Conferenc, Paris, June 3–7, France, 2002 (EPS–IGA and CERN) p. 2091.
- T. Nakatani et al.: presented in the 8th International Conference on Synchrotron Radiation Instrumentation, San Francisco, Aug. 25–29, U.S.A.
- 8) S. Matsui et al.: Jpn. J. Appl. Phys. 42, L338 (2003).
- L. Zhang: Proc. of the 7th European Particle Accelerator Conferenc, Vienna, June 26–30, Austria, 2000 (Austrian Academy of Science Press) p. 2489.
- H. Aoyagi et al.: Nucl. Instr. and Meth. in Phys. Res. A 467–468, 252 (2001).
- H. Aoyagi et al.: presented in the 8th International Conference on Synchrotron Radiation Instrumentation, San Francisco, Aug. 25–29, U.S.A.
- 12) M. Böge et al.: Proc. of the 8th European Particle Accelerator Conferenc, Paris, June 3–7, France, 2002 (EPS–IGA and CERN) p. 2067.
- M. Böge et al.: Proc. of the 1999 Particle Accelerator Conferenc, New York City, Mar. 29–April 2, U.S.A., 1999 (BNL and IEEE) p. 2091.
- 14) 田中 均,大熊春夫: SPring-8 利用者情報, Vol. 8, No. 5, 298 (2003).